Variational message passing (original) (raw)

Property Value
dbo:abstract 変分メッセージパッシング(へんぶんメッセージパッシング、英語: Variational message passing、VMP)はJohn Winnによって開発された、指数族のを用いた離散、連続ベイジアンネットワークを近似的に推論するための手法である。VMPはLatent Dirichlet allocation(LDA)などの手法で利用されるを一般化した手法であり、各々のノードの周辺分布を、その上に存在するメッセージを用いて逐次的に更新し、その近似解を求める。 (ja) Variational message passing (VMP) is an approximate inference technique for continuous- or discrete-valued Bayesian networks, with conjugate-exponential parents, developed by John Winn. VMP was developed as a means of generalizing the approximate variational methods used by such techniques as latent Dirichlet allocation, and works by updating an approximate distribution at each node through messages in the node's Markov blanket. (en)
dbo:wikiPageExternalLink http://www.johnwinn.org/Publications/papers/VMP2004.pdf http://dimple.probprog.org http://vibes.sourceforge.net http://research.microsoft.com/infernet https://web.archive.org/web/20050428173705/http:/www.cs.toronto.edu/~beal/thesis/beal03.pdf http://www.cs.toronto.edu/~beal/thesis/beal03.pdf
dbo:wikiPageID 2461612 (xsd:integer)
dbo:wikiPageLength 5835 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1103078029 (xsd:integer)
dbo:wikiPageWikiLink dbc:Bayesian_networks dbr:Normalization_factor dbr:Approximate_inference dbr:Relative_entropy dbr:Mean dbr:Gamma_distribution dbr:Conjugate_prior dbr:Latent_Dirichlet_allocation dbr:Graphical_models dbr:Exponential_distribution dbr:Exponential_family dbr:Bayesian_networks dbr:Dirichlet_distribution dbr:Gaussian_distribution dbr:Poisson_distribution dbr:Markov_blanket dbr:Variational_Bayesian_methods dbr:Sufficient_statistic dbr:Natural_parameter dbr:Conjugate_exponents
dbp:wikiPageUsesTemplate dbt:Cite_journal dbt:Cite_thesis dbt:Main dbt:Reflist
dcterms:subject dbc:Bayesian_networks
gold:hypernym dbr:Technique
rdf:type dbo:TopicalConcept yago:WikicatBayesianNetworks yago:Abstraction100002137 yago:Group100031264 yago:Network108434259 yago:System108435388
rdfs:comment 変分メッセージパッシング(へんぶんメッセージパッシング、英語: Variational message passing、VMP)はJohn Winnによって開発された、指数族のを用いた離散、連続ベイジアンネットワークを近似的に推論するための手法である。VMPはLatent Dirichlet allocation(LDA)などの手法で利用されるを一般化した手法であり、各々のノードの周辺分布を、その上に存在するメッセージを用いて逐次的に更新し、その近似解を求める。 (ja) Variational message passing (VMP) is an approximate inference technique for continuous- or discrete-valued Bayesian networks, with conjugate-exponential parents, developed by John Winn. VMP was developed as a means of generalizing the approximate variational methods used by such techniques as latent Dirichlet allocation, and works by updating an approximate distribution at each node through messages in the node's Markov blanket. (en)
rdfs:label 変分メッセージパッシング (ja) Variational message passing (en)
owl:sameAs freebase:Variational message passing yago-res:Variational message passing wikidata:Variational message passing dbpedia-ja:Variational message passing https://global.dbpedia.org/id/4xWif
prov:wasDerivedFrom wikipedia-en:Variational_message_passing?oldid=1103078029&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Variational_message_passing
is dbo:wikiPageDisambiguates of dbr:Message_passing_(disambiguation) dbr:Passing dbr:VMP
is dbo:wikiPageWikiLink of dbr:Message_passing_(disambiguation) dbr:One-shot_learning dbr:Approximate_inference dbr:Passing dbr:VMP dbr:Variational_Bayesian_methods dbr:List_of_statistics_articles dbr:Outline_of_machine_learning
is foaf:primaryTopic of wikipedia-en:Variational_message_passing