Volterra's function (original) (raw)

Property Value
dbo:abstract En mathématiques, la fonction de Volterra, qui prend son nom de Vito Volterra, est une fonction réelle V définie sur , ayant la curieuse combinaison suivante de propriétés : * V est dérivable partout ; * la dérivée V' est bornée partout ; * la dérivée n'est pas Riemann-intégrable. (fr) In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties: * V is differentiable everywhere * The derivative V ′ is bounded everywhere * The derivative is not Riemann-integrable. (en)
dbo:thumbnail wiki-commons:Special:FilePath/Volerra_function.svg?width=300
dbo:wikiPageExternalLink http://www.macalester.edu/~bressoud/talks/AlleghenyCollege/Wrestling.pdf http://www.macalester.edu/~bressoud/talks/apnc2004/Volterra.ppt
dbo:wikiPageID 924193 (xsd:integer)
dbo:wikiPageLength 4204 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1057384311 (xsd:integer)
dbo:wikiPageWikiLink dbr:Real-valued_function dbr:Bounded_function dbr:David_Bressoud dbr:Riemann_integral dbr:Vito_Volterra dbr:Mathematics dbr:Fundamental_theorem_of_calculus dbr:Function_of_a_real_variable dbr:Lebesgue_measure dbc:Fractals dbc:General_topology dbc:Measure_theory dbr:Differentiable_function dbr:Smith–Volterra–Cantor_set dbr:Riemann_integration dbr:File:Volerra_function.svg
dbp:wikiPageUsesTemplate dbt:Norefs
dcterms:subject dbc:Fractals dbc:General_topology dbc:Measure_theory
gold:hypernym dbr:V
rdf:type dbo:MeanOfTransportation yago:Abstraction100002137 yago:Cognition100023271 yago:Form105930736 yago:Fractal105931152 yago:Function113783816 yago:MathematicalRelation113783581 yago:PsychologicalFeature100023100 yago:Relation100031921 yago:Structure105726345 yago:WikicatElementarySpecialFunctions yago:WikicatFractals
rdfs:comment En mathématiques, la fonction de Volterra, qui prend son nom de Vito Volterra, est une fonction réelle V définie sur , ayant la curieuse combinaison suivante de propriétés : * V est dérivable partout ; * la dérivée V' est bornée partout ; * la dérivée n'est pas Riemann-intégrable. (fr) In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties: * V is differentiable everywhere * The derivative V ′ is bounded everywhere * The derivative is not Riemann-integrable. (en)
rdfs:label Fonction de Volterra (fr) Volterra's function (en)
owl:sameAs freebase:Volterra's function yago-res:Volterra's function wikidata:Volterra's function dbpedia-fr:Volterra's function https://global.dbpedia.org/id/2rLEU
prov:wasDerivedFrom wikipedia-en:Volterra's_function?oldid=1057384311&ns=0
foaf:depiction wiki-commons:Special:FilePath/Volerra_function.svg
foaf:isPrimaryTopicOf wikipedia-en:Volterra's_function
is dbo:wikiPageDisambiguates of dbr:Volterra_(disambiguation)
is dbo:wikiPageRedirects of dbr:Volterras_function dbr:Volterra_function
is dbo:wikiPageWikiLink of dbr:Pathological_(mathematics) dbr:Vito_Volterra dbr:Fundamental_theorem_of_calculus dbr:Thomae's_function dbr:Antiderivative dbr:Smith–Volterra–Cantor_set dbr:Volterra_(disambiguation) dbr:Volterras_function dbr:Volterra_function
is foaf:primaryTopic of wikipedia-en:Volterra's_function