dbo:abstract |
En mathématiques, la fonction de Volterra, qui prend son nom de Vito Volterra, est une fonction réelle V définie sur , ayant la curieuse combinaison suivante de propriétés : * V est dérivable partout ; * la dérivée V' est bornée partout ; * la dérivée n'est pas Riemann-intégrable. (fr) In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties: * V is differentiable everywhere * The derivative V ′ is bounded everywhere * The derivative is not Riemann-integrable. (en) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Volerra_function.svg?width=300 |
dbo:wikiPageExternalLink |
http://www.macalester.edu/~bressoud/talks/AlleghenyCollege/Wrestling.pdf http://www.macalester.edu/~bressoud/talks/apnc2004/Volterra.ppt |
dbo:wikiPageID |
924193 (xsd:integer) |
dbo:wikiPageLength |
4204 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1057384311 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Real-valued_function dbr:Bounded_function dbr:David_Bressoud dbr:Riemann_integral dbr:Vito_Volterra dbr:Mathematics dbr:Fundamental_theorem_of_calculus dbr:Function_of_a_real_variable dbr:Lebesgue_measure dbc:Fractals dbc:General_topology dbc:Measure_theory dbr:Differentiable_function dbr:Smith–Volterra–Cantor_set dbr:Riemann_integration dbr:File:Volerra_function.svg |
dbp:wikiPageUsesTemplate |
dbt:Norefs |
dcterms:subject |
dbc:Fractals dbc:General_topology dbc:Measure_theory |
gold:hypernym |
dbr:V |
rdf:type |
dbo:MeanOfTransportation yago:Abstraction100002137 yago:Cognition100023271 yago:Form105930736 yago:Fractal105931152 yago:Function113783816 yago:MathematicalRelation113783581 yago:PsychologicalFeature100023100 yago:Relation100031921 yago:Structure105726345 yago:WikicatElementarySpecialFunctions yago:WikicatFractals |
rdfs:comment |
En mathématiques, la fonction de Volterra, qui prend son nom de Vito Volterra, est une fonction réelle V définie sur , ayant la curieuse combinaison suivante de propriétés : * V est dérivable partout ; * la dérivée V' est bornée partout ; * la dérivée n'est pas Riemann-intégrable. (fr) In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties: * V is differentiable everywhere * The derivative V ′ is bounded everywhere * The derivative is not Riemann-integrable. (en) |
rdfs:label |
Fonction de Volterra (fr) Volterra's function (en) |
owl:sameAs |
freebase:Volterra's function yago-res:Volterra's function wikidata:Volterra's function dbpedia-fr:Volterra's function https://global.dbpedia.org/id/2rLEU |
prov:wasDerivedFrom |
wikipedia-en:Volterra's_function?oldid=1057384311&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Volerra_function.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Volterra's_function |
is dbo:wikiPageDisambiguates of |
dbr:Volterra_(disambiguation) |
is dbo:wikiPageRedirects of |
dbr:Volterras_function dbr:Volterra_function |
is dbo:wikiPageWikiLink of |
dbr:Pathological_(mathematics) dbr:Vito_Volterra dbr:Fundamental_theorem_of_calculus dbr:Thomae's_function dbr:Antiderivative dbr:Smith–Volterra–Cantor_set dbr:Volterra_(disambiguation) dbr:Volterras_function dbr:Volterra_function |
is foaf:primaryTopic of |
wikipedia-en:Volterra's_function |