Synaptic plasticity and addiction (original) (raw)
Ramón y Cajal, S. La fine structure des centres nerveux. Proc. R. Soc. Lond.55, 444–468 (1894). Article Google Scholar
Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol.232, 331–356 (1973). The initial, now classic, description of LTP in the hippocampus. ArticleCASPubMedPubMed Central Google Scholar
Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron44, 5–21 (2004). ArticleCASPubMed Google Scholar
Foeller, E. & Feldman, D. E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol.14, 89–95 (2004). ArticleCASPubMed Google Scholar
Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci.2, 695–703 (2001). ArticleCAS Google Scholar
Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry162, 1403–1413 (2005). ArticlePubMed Google Scholar
Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine in behavioural control. Nature431, 760–767 (2004). ArticleCASPubMed Google Scholar
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward–related learning and memory. Annu. Rev. Neurosci.29, 565–598 (2006). ArticleCASPubMed Google Scholar
Kauer, J. A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol.66, 447–475 (2004). ArticleCASPubMed Google Scholar
Kelley, A. E. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron44, 161–179 (2004). ArticleCASPubMed Google Scholar
Badiani, A. & Robinson, T. E. Drug-induced neurobehavioral plasticity: the role of environmental context. Behav. Pharmacol.15, 327–339 (2004). ArticleCASPubMed Google Scholar
Kitamura, O., Wee, S., Specio, S. E., Koob, G. F. & Pulvirenti, L. Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacology (Berl)186, 48–53 (2006). ArticleCAS Google Scholar
Morris, R. G. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci.23, 2829–2846 (2006). ArticleCASPubMed Google Scholar
Schenk, S., Valadez, A., Worley, C. M. & McNamara, C. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK-801 (dizocilpine). Behav. Pharmacol.4, 652–659 (1993). CASPubMed Google Scholar
Kalivas, P. W. & Alesdatter, J. E. Involvement of NMDA receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther.267, 486–495 (1993). CASPubMed Google Scholar
Harris, G. C., Wimmer, M., Byrne, R. & Aston-Jones, G. Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience129, 841–847 (2004). ArticleCASPubMed Google Scholar
Harris, G. C. & Aston-Jones, G. Critical role for ventral tegmental glutamate in preference for a cocaine-conditioned environment. Neuropsychopharmacology28, 73–76 (2003). ArticleCASPubMed Google Scholar
Karler, R., Calder, L. D., Chaudhry, I. A. & Turkanis, S. A. Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sciences45, 599–606 (1989). ArticleCASPubMed Google Scholar
Jeziorski, M., White, F. J. & Wolf, M. E. MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse16, 137–147 (1994). ArticleCASPubMed Google Scholar
Kim, H. S., Park, W. K., Jang, C. G. & Oh, S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain. Res. Bull.40, 201–207 (1996). ArticleCASPubMed Google Scholar
Tzschentke, T. M. & Schmidt, W. J. N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci. Lett.193, 37–40 (1995). ArticleCASPubMed Google Scholar
Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev.16, 223–244 (1991). ArticleCASPubMed Google Scholar
Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev.18, 247–291 (1993). ArticleCASPubMed Google Scholar
Tong, Z. Y., Overton, P. G. & Clark, D. Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res.674, 63–74 (1995). ArticleCASPubMed Google Scholar
Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiology54, 1–42 (1998). Article Google Scholar
Kalivas, P. W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol.4, 23–29 (2004). ArticleCASPubMed Google Scholar
Baler, R. D. & Volkow, N. D. Drug addiction: the neurobiology of disrupted self-control. Trends Mol. Med.12, 559–566 (2006). ArticleCASPubMed Google Scholar
Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science285, 1870–1874 (1999). ArticleCASPubMed Google Scholar
Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci.24, 1071–1089 (2001). ArticleCASPubMed Google Scholar
Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature429, 761–766 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lau, C. G. & Zukin, R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci.8, 413–426. ArticleCAS Google Scholar
Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci.6, 863–876 (2005). ArticleCAS Google Scholar
Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci.2, 625–633 (1999). ArticleCASPubMed Google Scholar
Contractor, A., Rogers, C., Maron, C., Henkemeyer, M., Swanson, G. T. & Heinemann S. F. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science296, 1864–1869 (2002). ArticleCASPubMed Google Scholar
Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. & Malenka, R. C. RIM1α is required for presynaptic long-term potentiation. Nature415, 327–330 (2002). ArticleCASPubMed Google Scholar
Castillo, P. E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature388, 590–593 (1997). ArticleCASPubMed Google Scholar
Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci.2, 315–324 (2001). ArticleCAS Google Scholar
Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron15, 417–426 (1995). ArticleCASPubMed Google Scholar
Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neurosci.8, 1043–1050 (2005). ArticleCASPubMed Google Scholar
Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science296, 678–682 (2002). ArticleCASPubMed Google Scholar
Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci.29, 37–76 (2006). ArticleCASPubMed Google Scholar
Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci.5, 97–107 (2004). ArticleCAS Google Scholar
Wierenga, C. J., Ibata, K. & Turrigiano, G. G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J. Neurosci.25, 2895–2905 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature440, 1054–1059 (2006). ArticleCASPubMed Google Scholar
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA85, 5274–5278 (1980). Article Google Scholar
Omelchenko, N. & Sesack, S. R. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience146, 1259–1274 (2007). ArticleCASPubMed Google Scholar
Carr, D. B. & Sesack, S. R. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci.20, 3864–3873 (2000). ArticleCASPubMedPubMed Central Google Scholar
Overton, P. G., Richards, C. D., Berry, M. S. & Clark, D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport10, 221–226 (1999). ArticleCASPubMed Google Scholar
Bonci, A. & Malenka, R. C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci.19, 3723–3730 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mansvelder, H. D. & McGehee, D. S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron27, 349–357 (2000). ArticleCASPubMed Google Scholar
Liu, Q. S., Pu, L. & Poo, M. M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature437, 1027–1031 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jones, S., Kornblum, J. L. & Kauer, J. A. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J. Neurosci.20, 5575–5580 (2000). ArticleCASPubMedPubMed Central Google Scholar
Thomas, M. T., Malenka, R. C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci.20, 5581–5586 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bellone, C. & Luscher, C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur. J. Neurosci.21, 1280–1288 (2005). ArticlePubMed Google Scholar
Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature411, 583–587 (2001). ArticleCASPubMed Google Scholar
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron37, 577–582 (2003). ArticleCASPubMed Google Scholar
Faleiro, L. J., Jones, S. & Kauer, J. A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology29, 2115–2125 (2004). References 60–62 demonstrate thatin vivoadministration of different classes of drugs of abuse, as well as acute stress, elicit LTP at excitatory synapses on midbrain dopamine neurons. ArticleCASPubMed Google Scholar
Marinelli, M. & Piazza, P. V. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci.16, 387–394 (2002). ArticlePubMed Google Scholar
Wallace, B. C. Psychological and environmental determinants of relapse in crack cocaine smokers. J. Subst. Abuse Treat.6, 95–106 (1989). ArticleCASPubMed Google Scholar
Stewart, J. Stress and relapse to drug seeking: studies in laboratory animals shed light on mechanisms and sources of long-term vulnerability. Am. J. Addict.12, 1–17 (2003). ArticleCASPubMed Google Scholar
Piazza, P. V. & Le Moal, M. The role of stress in drug self-administration. Trends Pharmacol. Sci.19, 67–74 (1998). ArticleCASPubMed Google Scholar
Dong, Y. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proc. Natl Acad. Sci. USA101, 14282–14287 (2004). ArticleCASPubMedPubMed Central Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). ArticleCASPubMed Google Scholar
Carlezon Jr, W. A. et al. Sensitization to morphine induced by viral-mediated gene transfer. Science277, 812–814 (1997). Demonstration that viral-mediated expression of GluR1 in the ventral tegmental area enhances the locomotor stimulatory and rewarding actions of morphine. ArticleCAS Google Scholar
Borgland, S. L., Malenka, R. C. & Bonci, A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci.24, 7482–7490 (2004). ArticleCASPubMedPubMed Central Google Scholar
Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci.20, 798–805 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pu, L., Liu, Q. S. & Poo, M. M. BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nature Neurosci.9, 605–607 (2006). ArticleCASPubMed Google Scholar
Lu, L., Dempsey, J., Liu, S. Y., Bossert, J. M. & Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci.24, 1604–1611 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. J. & Zukin, R. S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci.30, 126–134 (2007). ArticleCASPubMed Google Scholar
Carlezon Jr, W. A. & Nestler, E. J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci.25, 610–615 (2002). Article Google Scholar
Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci.7, 244–253 (2004). ArticleCASPubMed Google Scholar
Clem, R. L. & Barth, A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron49, 663–670 (2006). ArticleCASPubMed Google Scholar
Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nature Neurosci.9, 602–604 (2006). ArticleCASPubMed Google Scholar
Adesnik, H. & Nicoll, R. A. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J. Neurosci.27, 4598–4602 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bagal, A. A., Kao, J. P., Tang, C. M. & Thompson, S. M. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc. Natl Acad. Sci. USA102, 14434–14439 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nature Neurosci.9, 636–641 (2006). ArticleCASPubMed Google Scholar
Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science317, 530–533 (2007). References 81 and 82 present evidence that a novel form of mGluR-LTD reverses the cocaine-induced LTP at excitatory synapses on ventral tegmental area dopamine cells. ArticleCASPubMed Google Scholar
de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA95, 322–327 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell92, 573–585 (1998). ArticleCASPubMed Google Scholar
Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci.29, 571–577 (2006). ArticleCASPubMed Google Scholar
Fadel, J. & Deutch, A. Y. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience111, 379–387 (2002). ArticleCASPubMed Google Scholar
Baldo, B. A., Daniel, R. A., Berridge, C. W. & Kelley, A. E. Overlapping distributions of orexin/hypocretin- and dopamine-β-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol.464, 220–237 (2003). ArticlePubMed Google Scholar
Boutrel, B. Hypocretins: between desire and needs. toward the understanding of a new hypothalamic brain pathway involved in motivation and addiction. Med. Sci. (Paris)22, 573–575 (2006). Article Google Scholar
Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature437, 556–559 (2005). Demonstration that orexin neurons in the lateral hypothalamus play a key role in the reinstatement of drug-seeking behaviour at least in part due to actions of orexin A in the ventral tegmental area. ArticleCASPubMed Google Scholar
Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci.26, 398–405 (2006). ArticleCASPubMedPubMed Central Google Scholar
Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron49, 589–601 (2006). Demonstration that orexin A enhances NMDAR-mediated synaptic currents in ventral tegmental area (VTA) dopamine neurons and that its actions in the VTA are required for behavioural sensitization to cocaine. ArticleCASPubMed Google Scholar
Schilstrom, B. et al. Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. J. Neurosci.26, 8549–8558 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yim, C. Y. & Mogenson, G. J. Electrophysiological studies of neurons in the ventral tegmental area of Tsai. Brain Res.181, 301–313 (1980). ArticleCASPubMed Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992). ArticleCASPubMedPubMed Central Google Scholar
Mansvelder, H. D., Keath, J. R. & McGehee, D. S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron33, 905–919 (2002). ArticleCASPubMed Google Scholar
Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature446, 1086–1090 (2007). Demonstration of LTP of inhibitory synapses on ventral tegmental area dopamine neurons due to a long-lasting enhancement of GABA release triggered by NMDAR-dependent release of nitric oxide from the dopamine neurons. Exposure to morphinein vivoblocks this LTP by interrupting the signalling from nitric oxide to guanylate cyclase. ArticleCASPubMed Google Scholar
Martin, M., Chen, B. T., Hopf, F. W., Bowers, M. S. & Bonci, A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nature Neurosci.9, 868–869 (2006). ArticleCASPubMed Google Scholar
Cardinal, R. N. & Everitt, B. J. Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr. Opin. Neurobiol.14, 156–162 (2004). ArticleCASPubMed Google Scholar
Kalivas, P. W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron45, 647–650 (2005). ArticleCASPubMed Google Scholar
Pierce, R. C. & Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev.30, 215–238 (2006). ArticleCASPubMed Google Scholar
Kombian, S. B. & Malenka, R. C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature368, 242–246 (1994). ArticleCASPubMed Google Scholar
Schramm, N. L., Egli, R. E. & Winder, D. G. LTP in the mouse nucleus accumbens is developmentally regulated. Synapse45, 213–219 (2002). ArticleCASPubMed Google Scholar
Yao, W. D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron41, 625–638 (2004). ArticleCASPubMed Google Scholar
Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. USA99, 8384–8388 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci.23, 4815–4820 (2003). ArticleCASPubMedPubMed Central Google Scholar
Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science310, 1340–1343 (2005). ArticleCASPubMed Google Scholar
Thomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nature Neurosci.4, 1217–1223 (2001). References 106 and 107 demonstrate that in animals, which had previously been exposed to cocaine to elicit sensitization, a single subsequent dose of cocaine elicits LTD at excitatory synapses in the nucleus accumbens and that preventing this LTDin vivoprevents the expression of behavioral sensitization. ArticleCASPubMed Google Scholar
Schramm-Sapyta, N. L., Olsen, C. M. & Winder, D. G. Cocaine self-administration reduces excitatory responses in the mouse nucleus accumbens shell. Neuropsychopharmacology31, 1444–1451 (2006). ArticleCASPubMed Google Scholar
Kourrich, S., Rothwell, P., Klug, J. & Thomas, M. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci.27, 7921–7928 (2007). ArticleCASPubMedPubMed Central Google Scholar
Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology47, S33–S46 (2004). ArticleCAS Google Scholar
Boudreau, A. C. & Wolf, M. E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci.25, 9144–9151 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pierce, R. C., Bell, K., Duffy, P. & Kalivas, P. W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci.16, 1550–1560 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cornish, J. L. & Kalivas, P. W. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci.20, RC89 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci.24, 6939–6945 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mato, S. et al. A single in vivo exposure to δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neurosci.7, 585–596 (2004). References 114 and 115 demonstrate that a singlein vivodose of cocaine or THC abolishes endocannabinoid-mediated LTD in the nucleus accumbens. ArticleCASPubMed Google Scholar
Mato, S., Robbe, D., Puente, N., Grandes, P. & Manzoni, O. J. Presynaptic homeostatic plasticity rescues long-term depression after chronic δ9-tetrahydrocannabinol exposure. J. Neurosci.25, 11619–11627 (2005). ArticleCASPubMedPubMed Central Google Scholar
Goto, Y. & Grace, A. A. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron47, 255–266 (2005). ArticleCASPubMed Google Scholar
Baker, D. A. et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nature Neurosci.6, 743–749 (2003). ArticleCASPubMed Google Scholar
Szumlinski, K. K., Kalivas, P. W. & Worley, P. F. Homer proteins: implications for neuropsychiatric disorders. Curr. Opin. Neurobiol.16, 251–257 (2006). ArticleCASPubMed Google Scholar
Sutton, M. A. et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature421, 70–75 (2003). ArticleCASPubMed Google Scholar
Kelz, M. B. et al. Expression of the transcription factor δFosB in the brain controls sensitivity to cocaine. Nature401, 272–276 (1999). ArticleCASPubMed Google Scholar
Todtenkopf, M. S. et al. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J. Neurosci.26, 11665–11669 (2006). References 120–122 demonstrate that expression of AMPA receptor subunits in the nucleus accumbens influence cocaine-induced behaviours as well as the rewarding impact of electrical stimulation in the medial forebrain bundle. ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. F., Hu, X. T. & White, F. J. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci.18, 488–498 (1998). ArticlePubMedPubMed Central Google Scholar
Hu, X. T., Basu, S. & White, F. J. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. J. Neurophysiol.92, 15971–15977 (2004). Article Google Scholar
Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nature Neurosci.9, 475–477 (2006). ArticleCASPubMed Google Scholar
Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci.8, 355–367 (2007). ArticleCAS Google Scholar
Delfs, J. M., Zhu, Y., Druhan, J. P. & Aston-Jones, G. Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature403, 430–434 (2000). ArticleCASPubMed Google Scholar
Walker, J. R., Ahmed, S. H., Gracy, K. N. & Koob, G. F. Microinjections of an opiate receptor antagonist into the bed nucleus of the stria terminalis suppress heroin self-administration in dependent rats. Brain Res.854, 85–92 (2000). ArticleCASPubMed Google Scholar
Weitlauf, C., Egli, R. E., Grueter, B. A. & Winder, D. G. High-frequency stimulation induces ethanol-sensitive long-term potentiation at glutamatergic synapses in the dorsolateral bed nucleus of the stria terminalis. J. Neurosci.24, 5741–5747 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dumont, E. C., Mark, G. P., Mader, S. & Williams, J. T. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nature Neurosci.8, 413–414 (2005). Demonstration that self-administration of cocaine potentiates excitatory synaptic transmission in the bed nucleus of the stria terminalis, but that passive administration of cocaine or food does not. ArticleCASPubMed Google Scholar
Grueter, B. A. et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J. Neurosci.26, 3210–3219 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sigurdsson, T., Doyere, V., Cain, C. K. & LeDoux, J. E. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology52, 215–227 (2007). ArticleCASPubMed Google Scholar
Fu, Y. et al. Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J. Neurophysiol.97, 937–941 (2007). ArticleCASPubMed Google Scholar
Richter, R. M. & Weiss, F. In vivo CRF release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse32, 254–261 (1999). ArticleCASPubMed Google Scholar
Pollandt, S. et al. Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Eur. J. Neurosci.24, 1733–1743 (2006). ArticlePubMed Google Scholar
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature425, 917–925 (2003). ArticleCASPubMed Google Scholar
Kreitzer, A. C. & Malenka, R. C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature445, 643–647 (2007). ArticleCASPubMed Google Scholar
Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neurosci.9, 251–259 (2006). ArticleCASPubMed Google Scholar
Lee, K. W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl Acad. Sci. USA103, 3399–4304 (2006). References 138–140 use BAC transgenic mice to demonstrate cell specific modifications of medium spiny neuron synapses in the dorsal and ventral striatum followingin vivomanipulations. ArticleCASPubMedPubMed Central Google Scholar
Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature446, 633–639 (2007). ArticleCASPubMed Google Scholar
Zhang, F., Aravanis, A. M, Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci.8, 577–581 (2007). ArticleCAS Google Scholar
Schultz W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci.30, 259–288 (2007). ArticleCASPubMed Google Scholar