Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature411, 826–833 (2001) ADSCASPubMed Google Scholar
Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved?. Nature Immunol.6, 973–979 (2005) CAS Google Scholar
Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell124, 803–814 (2006) CASPubMed Google Scholar
van der Biezen, E. A. & Jones, J. D. G. Plant disease resistance proteins and the gene-for-gene concept. Trends Biochem. Sci.23, 454–456 (1998) CASPubMed Google Scholar
Matzinger, P. The danger model: a renewed sense of self. Science296, 301–305 (2002) ADSCASPubMed Google Scholar
Zipfel, C. & Felix, G. Plants and animals: a different taste for microbes?. Curr. Opin. Plant Biol.8, 353–360 (2005) CASPubMed Google Scholar
Ting, J. P. & Davis, B. K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol.23, 387–414 (2005) CASPubMed Google Scholar
Leipe, D. D., Koonin, E. V. & Aravind, L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol.343, 1–28 (2004) CASPubMed Google Scholar
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43, 205–227 (2005) CASPubMed Google Scholar
Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nature Rev. Genet.6, 206–220 (2005) CASPubMed Google Scholar
Kessler, A. & Baldwin, I. T. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol.53, 299–328 (2002) CASPubMed Google Scholar
Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci.7, 251–256 (2002) CASPubMed Google Scholar
Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J.18, 265–276 (1999) CASPubMed Google Scholar
Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature428, 764–767 (2004) ADSCASPubMed Google Scholar
Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell18, 465–476 (2006) CASPubMedPubMed Central Google Scholar
Robatzek, S., Chinchilla, D. & Boller, T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev.20, 537–542 (2006) CASPubMedPubMed Central Google Scholar
Sun, W., Dunning, F. M., Pfund, C., Weingarten, R. & Bent, A. F. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis _FLAGELLIN SENSING2_-dependent defenses. Plant Cell18 764–779 doi: 10.1105/tpc.105.037648 (2006) ArticleCASPubMedPubMed Central Google Scholar
Felix, G. & Boller, T. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem.278, 6201–6208 (2003) CASPubMed Google Scholar
Kunze, G. et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell16, 3496–3507 (2004) CASPubMedPubMed Central Google Scholar
Zipfel, C. et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts _Agrobacterium_-mediated transformation. Cell125, 749–760 (2006) CASPubMed Google Scholar
Shiu, S. H. & Bleecker, A. B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol.132, 530–543 (2003) CASPubMed Google Scholar
Dardick, C. & Ronald, P. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog2, e2 (2006) PubMedPubMed Central Google Scholar
Fritz-Laylin, L. K., Krishnamurthy, N., Tor, M., Sjolander, K. V. & Jones, J. D. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol.138, 611–623 (2005) CASPubMedPubMed Central Google Scholar
Schulze-Lefert, P. & Panstruga, R. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu. Rev. Phytopathol.41, 641–667 (2003) CASPubMed Google Scholar
Badel, J. L., Charkowski, A. O., Deng, W. L. & Collmer, A. A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. Mol. Plant Microbe Interact.15, 1014–1024 (2002) CASPubMed Google Scholar
Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol.60 425–449 doi: 10.1146/annurev.micro.60.080805.142251 (2006) ArticleCASPubMed Google Scholar
Abramovitch, R. B., Anderson, J. C. & Martin, G. B. Bacterial elicitation and evasion of plant innate immunity. Nature Rev. Mol. Cell Biol.7, 601–611 (2006) CAS Google Scholar
Mudgett, M. B. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol.56, 509–531 (2005) CASPubMed Google Scholar
Jakobek, J. L., Smith, J. A. & Lindgren, P. B. Suppression of bean defense responses by Pseudomonas syringae. Plant Cell5, 57–63 (1993) CASPubMedPubMed Central Google Scholar
Thilmony, R., Underwood, W. & He, S. Y. Genome-wide transcriptional analysis of the Arabidopsisthaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J.46, 34–53 (2006) CASPubMed Google Scholar
Tao, Y. et al. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonassyringae. Plant Cell15, 317–330 (2003) CASPubMedPubMed Central Google Scholar
Truman, W., de Zabala, M. T. & Grant, M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J.46, 14–33 (2006) CASPubMed Google Scholar
Nomura, K., Melotto, M. & He, S. Y. Suppression of host defense in compatible plant–Pseudomonassyringae interactions. Curr. Opin. Plant Biol.8, 361–368 (2005) CASPubMed Google Scholar
Desveaux, D., Singer, A. U. & Dangl, J. L. Type III effector proteins: doppelgangers of bacterial virulence. Curr. Opin. Plant Biol.9, 376–382 (2006) CASPubMed Google Scholar
Nomura, K. et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science313 220–223 doi: 10.1126/science.1129523 (2006) ArticleADSCASPubMed Google Scholar
DebRoy S., Thilmony, R., Kwack, Y-B., Nomura, K. & He, S. Y. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl Acad. Sci. USA101, 9927–9932 (2004) ADSPubMedPubMed Central Google Scholar
He, P. et al. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell125, 563–575 (2006) CASPubMed Google Scholar
Abramovitch, R. B., Kim, Y. J., Chen, S., Dickman, M. B. & Martin, G. B. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J.22, 60–69 (2003) CASPubMedPubMed Central Google Scholar
de Torres, M. et al. Pseudomonassyringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J.47, 368–382 10.1111/j.1365–313X.2006.02798.x. (2006) ArticleCASPubMed Google Scholar
Janjusevic, R., Abramovitch, R. B., Martin, G. B. & Stebbins, C. E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science311, 222–226 (2006) ADSCASPubMed Google Scholar
Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science312, 1211–1214 (2006) ADSCASPubMed Google Scholar
Rivas, S. & Thomas, C. M. Molecular interactions between tomato and the leaf mold pathogen Cladosporiumfulvum. Annu. Rev. Phytopathol.43, 395–436 (2005) CASPubMed Google Scholar
Allen, R. L. et al. Host–parasite coevolutionary conflict between Arabidopsis and downy mildew. Science306, 1957–1960 (2004) ADSCASPubMed Google Scholar
Rehmany, A. P. et al. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell17, 1839–1850 (2005) CASPubMedPubMed Central Google Scholar
Bhattacharjee, S. et al. The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PLoS Pathog2, e50 (2006) PubMedPubMed Central Google Scholar
Dodds, P. N., Lawrence, G. J., Catanzariti, A. M., Ayliffe, M. A. & Ellis, J. G. The MelampsoraliniAvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell16, 755–768 (2004) CASPubMedPubMed Central Google Scholar
Catanzariti, A. M., Dodds, P. N., Lawrence, G. J., Ayliffe, M. A. & Ellis, J. G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell18, 243–256 (2006) CASPubMedPubMed Central Google Scholar
Zhao, Y. et al. Virulence systems of Pseudomonassyringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J.36, 485–499 (2003) CASPubMed Google Scholar
Brooks, D. M., Bender, C. L. & Kunkel, B. N. The Pseudomonassyringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsisthaliana. Mol. Plant Pathol.6, 629–640 (2005) CASPubMed Google Scholar
Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S. The innate immune function of plant stomata against bacterial invasion. Cell126, 969–980 (2006) CASPubMed Google Scholar
Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science312, 436–439 (2006) ADSCASPubMed Google Scholar
Greenberg, J. T. & Yao, N. The role and regulation of programmed cell death in plant–pathogen interactions. Cell. Microbiol.6, 201–211 (2004) CASPubMed Google Scholar
Schulze-Lefert, P. Plant immunity: the origami of receptor activation. Curr. Biol.14, R22–R24 (2004) CASPubMed Google Scholar
Holt, B. F., Belkhadir, Y. & Dangl, J. L. Antagonistic control of disease resistance protein stability in the plant immune system. Science309, 929–932 (2005) ADSCASPubMed Google Scholar
Takken, F. L., Albrecht, M. & Tameling, W. I. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol.9, 383–390 (2006) CASPubMed Google Scholar
Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol.42, 185–209 (2004) CASPubMed Google Scholar
Dorey, S. et al. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein. Mol. Plant Microbe Interact.10, 646–655 (1997) CAS Google Scholar
Torres, M. A., Jones, J. D. & Dangl, J. L. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsisthaliana. Nature Genet.37, 1130–1134 (2005) CASPubMed Google Scholar
Eulgem, T. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci.10, 71–78 (2005) CASPubMed Google Scholar
Kim, H. S. et al. The Pseudomonassyringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc. Natl Acad. Sci. USA102, 6496–6501 (2005) ADSCASPubMedPubMed Central Google Scholar
Mackey, D., Holt, B. F., Wiig, A. & Dangl, J. L. RIN4 interacts with Pseudomonassyringae type III effector molecules and is required for RPM1-mediated disease resistance in Arabidopsis. Cell108, 743–754 (2002) CASPubMed Google Scholar
Axtell, M. J., Chisholm, S. T., Dahlbeck, D. & Staskawicz, B. J. Genetic and molecular evidence that the Pseudomonassyringae type III effector protein AvrRpt2 is a cysteine protease. Mol. Microbiol.49, 1537–1546 (2003) CASPubMed Google Scholar
Coaker, G., Falick, A. & Staskawicz, B. Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science308, 548–550 (2005) ADSCASPubMed Google Scholar
Chisholm, S. T. et al. Molecular characterization of proteolytic cleavage sites of the Pseudomonassyringae effector AvrRpt2. Proc. Natl Acad. Sci. USA102, 2087–2092 (2005) ADSCASPubMedPubMed Central Google Scholar
Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. & Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell112, 379–389 (2003) CASPubMed Google Scholar
Axtell, M. J. & Staskawicz, B. J. Initiation of _RPS2_-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell112, 369–377 (2003) CASPubMed Google Scholar
Day, B., Dahlbeck, D. & Staskawicz, B. J. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways. Plant Cell (September 29, doi: 10.1105/tpc.106.044693 2006)
Belkhadir, Y., Nimchuk, Z., Hubert, D. A., Mackey, D. & Dangl, J. L. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator, and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell16, 2822–2835 (2004) CASPubMedPubMed Central Google Scholar
Day, B. et al. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell17, 1292–1305 (2005) CASPubMedPubMed Central Google Scholar
Dodds, P. N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA103, 8888–8893 (2006) ADSCASPubMedPubMed Central Google Scholar
Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. & Valent, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J.19, 4004–4014 (2000) CASPubMedPubMed Central Google Scholar
Deslandes, L. et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl Acad. Sci. USA. 100 8024–8029 (June 3, doi: 10.1073/pnas.1230660100 2003) ArticleADSCASPubMedPubMed Central Google Scholar
Lipka, V. et al. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science310 1180–1183 doi: 10.1126/science.1119409 (2005) ArticleADSCASPubMed Google Scholar
Stein, M. et al. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell18 731–746 doi: 10.1105/tpc.105.038372 (2006) ArticleCASPubMedPubMed Central Google Scholar
Yun, B. W. et al. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J.34, 768–777 (2003) CASPubMed Google Scholar
Feys, B. J. et al. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell17, 2601–2613 (2005) CASPubMedPubMed Central Google Scholar
Collins, N. C. et al. SNARE-protein-mediated disease resistance at the plant cell wall. Nature425, 973–977 (2003) ADSCASPubMed Google Scholar
Assaad, F. F. et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell15, 5118–5129 (2004) CASPubMedPubMed Central Google Scholar
Bhat, R. A., Miklis, M., Schmelzer, E., Schulze-Lefert, P. & Panstruga, R. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl Acad. Sci. USA102, 3135–3140 (2005) ADSCASPubMedPubMed Central Google Scholar
Consonni, C. et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genet.38, 716–720 (2006) CASPubMed Google Scholar
Kobayashi, D. Y., Tamaki, S. J. & Keen, N. T. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc. Natl Acad. Sci. USA86, 157–161 (1989) ADSCASPubMedPubMed Central Google Scholar
Lorang, J. M., Shen, H., Kobayashi, D., Cooksey, D. & Keen, N. T. avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. Plant Microbe Interact.7, 208–215 (1994) Google Scholar
Peyyala, R. & Farman, M. L. Magnaportheoryzae isolates causing gray leaf spot of perennial ryegrass possess a functional copy of the AVR1–CO39 avirulence gene. Mol. Plant Pathol.7, 157–165 (2006) CASPubMed Google Scholar
Staal, J., Kaliff, M., Bohman, S. & Dixelius, C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeriamaculans, causal agent of blackleg disease. Plant J.46, 218–230 (2006) CASPubMed Google Scholar
Rohmer, L., Guttman, D. S. & Dangl, J. L. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonassyringae. Genetics167, 1341–1360 (2004) CASPubMedPubMed Central Google Scholar
Tsiamis, G. et al. Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J.19, 3204–3214 (2000) CASPubMedPubMed Central Google Scholar
Lawrence, G. L., Mayo, G. M. E. & Shepherd, K. W. Interactions between genes controlling pathogenicity in the flax rust fungus. Phytopathol.71, 12–19 (1981) Google Scholar
Bakker, E. G., Toomajian, C., Kreitman, M. & Bergelson, J. A. Genome-wide survey of R gene polymorphisms in Arabidopsis.Plant Cell. 18, 1803–1818 (2006) CASPubMedPubMed Central Google Scholar
Kuang, H., Woo, S. S., Meyers, B. C., Nevo, E. & Michelmore, R. W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell16, 2870–2894 (2004) CASPubMedPubMed Central Google Scholar
Van der Hoorn, R. A., De Wit, P. J. & Joosten, M. H. Balancing selection favors guarding resistance proteins. Trends Plant Sci.7, 67–71 (2002) CASPubMed Google Scholar
Thrall, P. H. & Burdon, J. J. Evolution of virulence in a plant host-pathogen metapopulation. Science299, 1735–1737 (2003) ADSCASPubMed Google Scholar
Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of _R_-gene-mediated resistance in Arabidopsisthaliana. Nature423, 74–77 (2003) ADSCASPubMed Google Scholar
Kemen, E. et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant Microbe Interact.18, 1130–1139 (2005) CASPubMed Google Scholar
Szurek, B., Marois, E., Bonas, U. & Van den Ackervecken, G. Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activationand the interaction with nuclear importin receptors from pepper. Plant J.26, 523–534 (2001) CASPubMed Google Scholar
Holt, B. F. et al. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev. Cell2, 807–817 (2002) PubMed Google Scholar
Palma, K., Zhang, Y. & Li, X. An importin α homolog, MOS6, plays an important role in plant innate immunity. Curr. Biol.15, 1129–1135 (2005) CASPubMed Google Scholar
Zhang, Y. & Li, X. A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1–1,constitutive 1. Plant Cell17 1306–1316 doi: 10.1105/tpc.104.029926 (2005) ArticleCASPubMedPubMed Central Google Scholar
Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science301, 1230–1233 (2003) ADSCASPubMed Google Scholar
Mucyn, T. S. et al. The NB-ARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell (October 6, doi: 10.1105/tpc.106.044016 2006)
Abramovitch, R. B. & Martin, G. B. AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol. Lett.245, 1–8 (2005) CASPubMed Google Scholar
Wu, A. J., Andriotis, V. M., Durrant, M. C. & Rathjen, J. P. A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase. Plant Cell16, 2809–2821 (2004) CASPubMedPubMed Central Google Scholar
Rooney, H. C. et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science308, 1783–1786 (2005) ADSCASPubMed Google Scholar