Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes (original) (raw)
Goodnow, C.C. Multistep pathogenesis of autoimmune disease. Cell130, 25–35 (2007). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell100, 57–70 (2000). ArticleCAS Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nat. Genet.19, 348–355 (1998). ArticleCAS Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998). ArticleCAS Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA96, 1563–1568 (1999). ArticleCAS Google Scholar
Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity14, 523–534 (2001). ArticleCAS Google Scholar
Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999). ArticleCAS Google Scholar
Egle, A., Harris, A.W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl. Acad. Sci. USA101, 6164–6169 (2004). ArticleCAS Google Scholar
Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol.5, 189–200 (2005). ArticleCAS Google Scholar
Strasser, A. & Bouillet, P. The control of apoptosis in lymphocyte selection. Immunol. Rev.193, 82–92 (2003). ArticleCAS Google Scholar
Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature415, 922–926 (2002). ArticleCAS Google Scholar
Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science285, 2122–2125 (1999). ArticleCAS Google Scholar
Chen, C.Z. & Lodish, H.F. MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol.17, 155–165 (2005). ArticleCAS Google Scholar
Mendell, J.T. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle4, 1179–1184 (2005). ArticleCAS Google Scholar
Calin, G.A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA101, 11755–11760 (2004). ArticleCAS Google Scholar
Calin, G.A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA101, 2999–3004 (2004). ArticleCAS Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). ArticleCAS Google Scholar
Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.64, 3087–3095 (2004). ArticleCAS Google Scholar
Zhang, B., Pan, X., Cobb, G.P. & Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol.302, 1–12 (2007). ArticleCAS Google Scholar
Tagawa, H. & Seto, M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia19, 2013–2016 (2005). ArticleCAS Google Scholar
Tanzer, A. & Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol.339, 327–335 (2004). ArticleCAS Google Scholar
de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol.33, 314–325 (2003). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar
Testi, R., Phillips, J.H. & Lanier, L.L. Leu 23 induction as an early marker of functional CD3/T cell antigen receptor triggering. Requirement for receptor cross-linking, prolonged elevation of intracellular [Ca++] and stimulation of protein kinase C. J. Immunol.142, 1854–1860 (1989). CASPubMed Google Scholar
Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol.2, 325–332 (2001). ArticleCAS Google Scholar
Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature369, 327–329 (1994). ArticleCASPubMed Central Google Scholar
Snapper, C.M. & Paul, W.E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science236, 944–947 (1987). ArticleCASPubMed Central Google Scholar
Finkelman, F.D., Katona, I.M., Mosmann, T.R. & Coffman, R.L. IFN-γ regulates the isotypes of Ig secreted during in vivo humoral immune responses. J. Immunol.140, 1022–1027 (1988). CASPubMed Google Scholar
Snapper, C.M., Finkelman, F.D., Stefany, D., Conrad, D.H. & Paul, W.E. IL-4 induces co-expression of intrinsic membrane IgG1 and IgE by murine B cells stimulated with lipopolysaccharide. J. Immunol.141, 489–498 (1988). CASPubMed Google Scholar
Shparago, N. et al. IL-10 selectively regulates murine Ig isotype switching. Int. Immunol.8, 781–790 (1996). ArticleCAS Google Scholar
Sosic, D., Richardson, J.A., Yu, K., Ornitz, D.M. & Olson, E.N. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-κB activity. Cell112, 169–180 (2003). ArticleCAS Google Scholar
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). ArticleCASPubMed Central Google Scholar
Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Central Google Scholar
Koralov, S.B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell (in the press).
Lindsley, R.C., Thomas, M., Srivastava, B. & Allman, D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood109, 2521–2528 (2007). ArticleCASPubMed Central Google Scholar
Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature435, 452–458 (2005). ArticleCAS Google Scholar
Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell27, 91–105 (2007). ArticleCASPubMed Central Google Scholar
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet.39, 1278–1284 (2007). ArticleCAS Google Scholar
Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell131, 1273–1286 (2007). ArticleCAS Google Scholar
Sylvestre, Y. et al. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem.282, 2135–2143 (2007). ArticleCAS Google Scholar
Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F–1. Cell85, 537–548 (1996). ArticleCAS Google Scholar
Field, S.J. et al. E2F–1 functions in mice to promote apoptosis and suppress proliferation. Cell85, 549–561 (1996). ArticleCAS Google Scholar
Murga, M. et al. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity15, 959–970 (2001). ArticleCAS Google Scholar
Zhu, J.W. et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol. Cell. Biol.21, 8547–8564 (2001). ArticleCASPubMed Central Google Scholar
Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity24, 729–739 (2006). ArticleCASPubMed Central Google Scholar