Guroff, G. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J. Biol. Chem.239, 149–155 (1964). CASPubMed Google Scholar
Croall, D. E. & DeMartino, G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev.71, 813–847 (1991). CASPubMed Google Scholar
Sorimachi, H., Hata, S. & Ono, Y. Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp. Anim.59, 549–566 (2010). CASPubMed Google Scholar
Goll, D. E., Thompson, V. F., Li, H., Wei, W. & Cong, J. The calpain system. Physiol. Rev.83, 731–801 (2003). CASPubMed Google Scholar
Dayton, W. R., Schollmeyer, J. V., Lepley, R. A. & Cortes, L. R. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim. Biophys. Acta659, 48–61 (1981). CASPubMed Google Scholar
Mellgren, R. L. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium. FEBS Lett.109, 129–133 (1980). CASPubMed Google Scholar
Inomata, M., Hayashi, M., Nakamura, M., Imahori, K. & Kawashima, S. Purification and characterization of a calcium-activated neutral protease from rabbit skeletal muscle which requires calcium ions of microM order concentration. J. Biochem.93, 291–294 (1983). CASPubMed Google Scholar
Cong, J., Goll, D. E., Peterson, A. M. & Kapprell, H. P. The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain). J. Biol. Chem.264, 10096–10103 (1989). CASPubMed Google Scholar
Edmunds, T., Nagainis, P. A., Sathe, S. K., Thompson, V. F. & Goll, D. E. Comparison of the autolyzed and unautolyzed forms of mu- and m-calpain from bovine skeletal muscle. Biochim. Biophys. Acta1077, 197–208 (1991). CASPubMed Google Scholar
Coolican, S. A. & Hathaway, D. R. Effect of L-α-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis. J. Biol. Chem.259, 11627–11630 (1984). CASPubMed Google Scholar
Imajoh, S., Kawasaki, H. & Suzuki, K. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. J. Biochem.99, 1281–1284 (1986). CASPubMed Google Scholar
Saido, T. C., Mizuno, K. & Suzuki, K. Proteolysis of protein kinase C by calpain: effect of acidic phospholipids. Biomed. Biochim. Acta50, 485–489 (1991). CASPubMed Google Scholar
Saido, T. C., Shibata, M., Takenawa, T., Murofushi, H. & Suzuki, K. Positive regulation of mu-calpain action by polyphosphoinositides. J. Biol. Chem.267, 24585–24590 (1992). CASPubMed Google Scholar
Aoki, K. et al. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (muCANP) deduced from its cDNA sequence. FEBS Lett.205, 313–317 (1986). CASPubMed Google Scholar
Imajoh, S. et al. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry27, 8122–8128 (1988). CASPubMed Google Scholar
Ohno, S. et al. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature312, 566–570 (1984). CASPubMed Google Scholar
Kawasaki, H., Imajoh, S., Kawashima, S., Hayashi, H. & Suzuki, K. The small subunits of calcium dependent proteases with different calcium sensitivities are identical. J. Biochem.99, 1525–1532 (1986). CASPubMed Google Scholar
Ohno, S., Emori, Y. & Suzuki, K. Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res.14, 5559 (1986). CASPubMedPubMed Central Google Scholar
Hosfield, C. M., Elce, J. S., Davies, P. L. & Jia, Z. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J.18, 6880–6889 (1999). This work showed the calcium-free structure of calpain, which can be used to explain enzymatic inactivity in the absence of calcium. CASPubMedPubMed Central Google Scholar
Strobl, S. et al. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl Acad. Sci. USA97, 588–592 (2000). This study investigated the structure of calpain without calcium, and describes the formation of a catalytic centre. CASPubMedPubMed Central Google Scholar
Hanna, R. A., Campbell, R. L. & Davies, P. L. Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature456, 409–412 (2008). This structural study shows the potent nature of specific calpastatin inhibition of up to four calpain molecules and the calcium-mediated conformational change. CASPubMed Google Scholar
Moldoveanu, T., Gehring, K. & Green, D. R. Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature456, 404–408 (2008). This structural study shows the calcium-mediated conformational changes that are required for calpastatin inhibition of calpain. CASPubMedPubMed Central Google Scholar
Minami, Y., Emori, Y., Kawasaki, H. & Suzuki, K. E-F hand structure-domain of calcium-activated neutral protease (CANP) can bind Ca2+ ions. J. Biochem.101, 889–895 (1987). CASPubMed Google Scholar
Imajoh, S., Kawasaki, H. & Suzuki, K. The COOH-terminal E-F hand structure of calcium-activated neutral protease (CANP) is important for the association of subunits and resulting proteolytic activity. J. Biochem.101, 447–452 (1987). CASPubMed Google Scholar
Blanchard, H. et al. Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nature Struct. Biol.4, 532–538 (1997). CASPubMed Google Scholar
Azam, M. et al. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol. Cell. Biol.21, 2213–2220 (2001). CASPubMedPubMed Central Google Scholar
Dutt, P. et al. m-Calpain is required for preimplantation embryonic development in mice. BMC Dev. Biol.6, 3 (2006). PubMedPubMed Central Google Scholar
Arthur, J. S., Elce, J. S., Hegadorn, C., Williams, K. & Greer, P. A. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol. Cell. Biol.20, 4474–4481 (2000). CASPubMedPubMed Central Google Scholar
Imajoh, S., Kawasaki, H. & Suzuki, K. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. J. Biochem.100, 633–642 (1986). CASPubMed Google Scholar
Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y. & Imahori, K. Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J. Biochem.90, 275–278 (1981). CASPubMed Google Scholar
Pontremoli, S. et al. An endogenous activator of the Ca2+-dependent proteinase of human neutrophils that increases its affinity for Ca2+. Proc. Natl Acad. Sci. USA85, 1740–1743 (1988). CASPubMedPubMed Central Google Scholar
Pontremoli, S. et al. Identification of an endogenous activator of calpain in rat skeletal muscle. Biochem. Biophys. Res. Commun.171, 569–574 (1990). CASPubMed Google Scholar
Salamino, F. et al. Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochem. J.290, 191–197 (1993). CASPubMedPubMed Central Google Scholar
Melloni, E., Michetti, M., Salamino, F. & Pontremoli, S. Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J. Biol. Chem.273, 12827–12831 (1998). CASPubMed Google Scholar
Xu, L. & Deng, X. Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains. J. Biol. Chem.281, 4457–4466 (2006). CASPubMed Google Scholar
Glading, A., Uberall, F., Keyse, S. M., Lauffenburger, D. A. & Wells, A. Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling. J. Biol. Chem.276, 23341–23348 (2001). This study demonstrated that m-calpain can be activated by ERK during EGFR signalling. CASPubMed Google Scholar
Smith, S. D., Jia, Z., Huynh, K. K., Wells, A. & Elce, J. S. Glutamate substitutions at a PKA consensus site are consistent with inactivation of calpain by phosphorylation. FEBS Lett.542, 115–118 (2003). CASPubMed Google Scholar
Shiraha, H., Glading, A., Chou, J., Jia, Z. & Wells, A. Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain. Mol. Cell. Biol.22, 2716–2727 (2002). CASPubMedPubMed Central Google Scholar
Leloup, L. et al. m-Calpain activation is regulated by its membrane localization and by its binding to phosphatidylinositol 4, 5-bisphosphate. J. Biol. Chem.285, 33549–33566 (2010). CASPubMedPubMed Central Google Scholar
Shao, H. et al. Spatial localization of m-calpain to the plasma membrane by phosphoinositide biphosphate binding during epidermal growth factor receptor-mediated activation. Mol. Cell. Biol.26, 5481–5496 (2006). CASPubMedPubMed Central Google Scholar
Goudenege, S., Poussard, S., Dulong, S. & Cottin, P. Biologically active milli-calpain associated with caveolae is involved in a spatially compartmentalised signalling involving protein kinase C α and myristoylated alanine-rich C-kinase substrate (MARCKS). Int. J. Biochem. Cell Biol.37, 1900–1910 (2005). CASPubMed Google Scholar
Kifor, O., Kifor, I., Moore, F. D. Jr, Butters, R. R. Jr & Brown, E. M. m-Calpain colocalizes with the calcium-sensing receptor (CaR) in caveolae in parathyroid cells and participates in degradation of the CaR. J. Biol. Chem.278, 31167–31176 (2003). CASPubMed Google Scholar
Garcia, M., Bondada, V. & Geddes, J. W. Mitochondrial localization of mu-calpain. Biochem. Biophys. Res. Commun.338, 1241–1247 (2005). CASPubMed Google Scholar
Badugu, R., Garcia, M., Bondada, V., Joshi, A. & Geddes, J. W. N. terminus of calpain 1 is a mitochondrial targeting sequence. J. Biol. Chem.283, 3409–3417 (2008). CASPubMed Google Scholar
Kar, P., Chakraborti, T., Samanta, K. & Chakraborti, S. Submitochondrial localization of associated mu-calpain and calpastatin. Arch. Biochem. Biophys.470, 176–186 (2008). CASPubMed Google Scholar
Wendt, A., Thompson, V. F. & Goll, D. E. Interaction of calpastatin with calpain: a review. Biol. Chem.385, 465–472 (2004). CASPubMed Google Scholar
Hanna, R. A., Garcia-Diaz, B. E. & Davies, P. L. Calpastatin simultaneously binds four calpains with different kinetic constants. FEBS Lett.581, 2894–2898 (2007). CASPubMed Google Scholar
Kapprell, H. P. & Goll, D. E. Effect of Ca2+ on binding of the calpains to calpastatin. J. Biol. Chem.264, 17888–17896 (1989). CASPubMed Google Scholar
Averna, M. et al. Changes in calpastatin localization and expression during calpain activation: a new mechanism for the regulation of intracellular Ca2+-dependent proteolysis. Cell. Mol. Life Sci.60, 2669–2678 (2003). CASPubMed Google Scholar
De Tullio, R., Sparatore, B., Salamino, F., Melloni, E. & Pontremoli, S. Rat brain contains multiple mRNAs for calpastatin. FEBS Lett.422, 113–117 (1998). CASPubMed Google Scholar
Parr, T. et al. Expression of calpastatin isoforms in muscle and functionality of multiple calpastatin promoters. Arch. Biochem. Biophys.427, 8–15 (2004). CASPubMed Google Scholar
Parr, T., Sensky, P. L., Bardsley, R. G. & Buttery, P. J. Calpastatin expression in porcine cardiac and skeletal muscle and partial gene structure. Arch. Biochem. Biophys.395, 1–13 (2001). CASPubMed Google Scholar
Raynaud, P., Jayat-Vignoles, C., Laforet, M. P., Leveziel, H. & Amarger, V. Four promoters direct expression of the calpastatin gene. Arch. Biochem. Biophys.437, 69–77 (2005). CASPubMed Google Scholar
Takano, J., Kawamura, T., Murase, M., Hitomi, K. & Maki, M. Structure of mouse calpastatin isoforms: implications of species-common and species-specific alternative splicing. Biochem. Biophys. Res. Commun.260, 339–345 (1999). CASPubMed Google Scholar
Takano, J., Watanabe, M., Hitomi, K. & Maki, M. Four types of calpastatin isoforms with distinct amino-terminal sequences are specified by alternative first exons and differentially expressed in mouse tissues. J. Biochem.128, 83–92 (2000). CASPubMed Google Scholar
Cong, M., Thompson, V. F., Goll, D. E. & Antin, P. B. The bovine calpastatin gene promoter and a new N-terminal region of the protein are targets for cAMP-dependent protein kinase activity. J. Biol. Chem.273, 660–666 (1998). CASPubMed Google Scholar
Sensky, P. L. et al. Effect of anabolic agents on calpastatin promoters in porcine skeletal muscle and their responsiveness to cyclic adenosine monophosphate- and calcium-related stimuli. J. Anim. Sci.84, 2973–2982 (2006). CASPubMed Google Scholar
Geesink, G. H., Nonneman, D. & Koohmaraie, M. An improved purification protocol for heart and skeletal muscle calpastatin reveals two isoforms resulting from alternative splicing. Arch. Biochem. Biophys.356, 19–24 (1998). CASPubMed Google Scholar
Raynaud, P. et al. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch. Biochem. Biophys.440, 46–53 (2005). CASPubMed Google Scholar
De Tullio, R. et al. Multiple rat brain calpastatin forms are produced by distinct starting points and alternative splicing of the N-terminal exons. Arch. Biochem. Biophys.465, 148–156 (2007). CASPubMed Google Scholar
De Tullio, R. et al. Involvement of exon 6-mediated calpastatin intracellular movements in the modulation of calpain activation. Biochim. Biophys. Acta1790, 182–187 (2009). CASPubMed Google Scholar
Lee, W. J. et al. Molecular diversity in amino-terminal domains of human calpastatin by exon skipping. J. Biol. Chem.267, 8437–8442 (1992). This work described the exon skipping that occurs in calpastatin resulting in a large number of variants. CASPubMed Google Scholar
Minobe, E. et al. A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels. Biochem. Biophys. Res. Commun.348, 288–294 (2006). CASPubMed Google Scholar
Averna, M. et al. Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem. J.354, 25–30 (2001). CASPubMedPubMed Central Google Scholar
Averna, M. et al. Age-dependent degradation of calpastatin in kidney of hypertensive rats. J. Biol. Chem.276, 38426–38432 (2001). CASPubMed Google Scholar
Parr, T., Sensky, P. L., Arnold, M. K., Bardsley, R. G. & Buttery, P. J. Effects of epinephrine infusion on expression of calpastatin in porcine cardiac and skeletal muscle. Arch. Biochem. Biophys.374, 299–305 (2000). CASPubMed Google Scholar
Salamino, F. et al. Modulation of rat brain calpastatin efficiency by post-translational modifications. FEBS Lett.412, 433–438 (1997). CASPubMed Google Scholar
Tullio, R. D. et al. Changes in intracellular localization of calpastatin during calpain activation. Biochem. J.343, 467–472 (1999). PubMedPubMed Central Google Scholar
Kimura, Y. et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nature Med.4, 915–922 (1998). CASPubMed Google Scholar
Braun, C. et al. Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type. Int. J. Cancer84, 6–9 (1999). CASPubMed Google Scholar
Lakshmikuttyamma, A., Selvakumar, P., Kanthan, R., Kanthan, S. C. & Sharma, R. K. Overexpression of m-calpain in human colorectal adenocarcinomas. Cancer Epidemiol. Biomarkers Prev.13, 1604–1609 (2004). CASPubMed Google Scholar
Reichrath, J. et al. Different expression patterns of calpain isozymes 1 and 2 (CAPN1 and 2) in squamous cell carcinomas (SCC) and basal cell carcinomas (BCC) of human skin. J. Pathol.199, 509–516 (2003). CASPubMed Google Scholar
Mamoune, A., Luo, J. H., Lauffenburger, D. A. & Wells, A. Calpain-2 as a target for limiting prostate cancer invasion. Cancer Res.63, 4632–4640 (2003). CASPubMed Google Scholar
Rios-Doria, J. et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J. Biol. Chem.278, 1372–1379 (2003). CASPubMed Google Scholar
Salehin, D. et al. Immunhistochemical analysis for expression of calpain 1, calpain 2 and calpastatin in endometrial cancer. Anticancer Res.30, 2837–2843 (2010). CASPubMed Google Scholar
Lee, S. J. et al. Increased expression of calpain 6 in uterine sarcomas and carcinosarcomas: an immunohistochemical analysis. Int. J. Gynecol. Cancer17, 248–253 (2007). PubMed Google Scholar
Lee, S. J., Kim, B. G., Choi, Y. L. & Lee, J. W. Increased expression of calpain 6 during the progression of uterine cervical neoplasia: immunohistochemical analysis. Oncol. Rep.19, 859–863 (2008). PubMed Google Scholar
Moretti, D. et al. Novel variants of muscle calpain 3 identified in human melanoma cells: cisplatin-induced changes in vitro and differential expression in melanocytic lesions. Carcinogenesis30, 960–967 (2009). CASPubMed Google Scholar
Yoshikawa, Y., Mukai, H., Hino, F., Asada, K. & Kato, I. Isolation of two novel genes, down-regulated in gastric cancer. Jpn J. Cancer Res.91, 459–463 (2000). CASPubMedPubMed Central Google Scholar
Moreno-Luna, R. et al. Calpain 10 gene and laryngeal cancer: a survival analysis. Head Neck33, 72–76 (2011). PubMed Google Scholar
Frances, C. P. et al. Identification of a protective haplogenotype within CAPN10 gene influencing colorectal cancer susceptibility. J. Gastroenterol. Hepatol.22, 2298–2302 (2007). CASPubMed Google Scholar
Fong, P. Y. et al. Association of diabetes susceptibility gene calpain-10 with pancreatic cancer among smokers. J. Gastrointest. Cancer41, 203–208 (2010). CASPubMedPubMed Central Google Scholar
Hill, J. W., Hu, J. J. & Evans, M. K. OGG1 is degraded by calpain following oxidative stress and cisplatin exposure. DNA Repair7, 648–654 (2008). CASPubMedPubMed Central Google Scholar
Zhou, J., Kohl, R., Herr, B., Frank, R. & Brune, B. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1α. Mol. Biol. Cell17, 1549–1558 (2006). CASPubMedPubMed Central Google Scholar
Huttenlocher, A., Sandborg, R. R. & Horwitz, A. F. Adhesion in cell migration. Curr. Opin. Cell Biol.7, 697–706 (1995). CASPubMed Google Scholar
Beckerle, M. C., Burridge, K., DeMartino, G. N. & Croall, D. E. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell51, 569–577 (1987). Interesting study that identified m-calpain localized to integrin-associated focal adhesion structures and directly cleaved the focal adhesion protein talin. CASPubMed Google Scholar
Cuevas, B. D. et al. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J.22, 3346–3355 (2003). CASPubMedPubMed Central Google Scholar
Huttenlocher, A. et al. Regulation of cell migration by the calcium-dependent protease calpain. J. Biol. Chem.272, 32719–32722 (1997). CASPubMed Google Scholar
Xu, L. & Deng, X. Suppression of cancer cell migration and invasion by protein phosphatase 2A through dephosphorylation of mu- and m-calpains. J. Biol. Chem.281, 35567–35575 (2006). CASPubMed Google Scholar
Postovit, L. M. et al. Calpain is required for MMP-2 and u-PA expression in SV40 large T-antigen-immortalized cells. Biochem. Biophys. Res. Commun.297, 294–301 (2002). CASPubMed Google Scholar
Carragher, N. O. et al. v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol. Cell. Biol.22, 257–269 (2002). CASPubMedPubMed Central Google Scholar
Carragher, N. O., Fonseca, B. D. & Frame, M. C. Calpain activity is generally elevated during transformation but has oncogene-specific biological functions. Neoplasia6, 53–73 (2004). CASPubMedPubMed Central Google Scholar
Chan, K. T., Bennin, D. A. & Huttenlocher, A. Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J. Biol. Chem.285, 11418–11426 (2010). CASPubMedPubMed Central Google Scholar
Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol.6, 977–983 (2004). CASPubMed Google Scholar
Yamaguchi, R., Maki, M., Hatanaka, M. & Sabe, H. Unphosphorylated and tyrosine-phosphorylated forms of a focal adhesion protein, paxillin, are substrates for calpain II in vitro: implications for the possible involvement of calpain II in mitosis-specific degradation of paxillin. FEBS Lett.356, 114–116 (1994). CASPubMed Google Scholar
Carragher, N. O., Levkau, B., Ross, R. & Raines, E. W. Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125(FAK), paxillin, and talin. J. Cell Biol.147, 619–630 (1999). CASPubMedPubMed Central Google Scholar
Franco, S., Perrin, B. & Huttenlocher, A. Isoform specific function of calpain 2 in regulating membrane protrusion. Exp. Cell Res.299, 179–187 (2004). CASPubMed Google Scholar
Liu, X. & Schnellmann, R. G. Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J. Pharmacol. Exp. Ther.304, 63–70 (2003). CASPubMed Google Scholar
Saido, T. C. et al. Spatial resolution of fodrin proteolysis in postischemic brain. J. Biol. Chem.268, 25239–25243 (1993). CASPubMed Google Scholar
Sato, K. et al. Degradation of fodrin by m-calpain in fibroblasts adhering to fibrillar collagen I gel. J. Biochem.136, 777–785 (2004). CASPubMed Google Scholar
Wang, H. et al. PKA-mediated protein phosphorylation protects ezrin from calpain I cleavage. Biochem. Biophys. Res. Commun.333, 496–501 (2005). CASPubMed Google Scholar
Shuster, C. B. & Herman, I. M. Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J. Cell Biol.128, 837–848 (1995). CASPubMed Google Scholar
Yao, X., Thibodeau, A. & Forte, J. G. Ezrin-calpain I interactions in gastric parietal cells. Am. J. Physiol.265, C36–C46 (1993). CASPubMed Google Scholar
Serrano, K. & Devine, D. V. Vinculin is proteolyzed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motil. Cytoskeleton58, 242–252 (2004). CASPubMed Google Scholar
Selliah, N., Brooks, W. H. & Roszman, T. L. Proteolytic cleavage of α-actinin by calpain in T cells stimulated with anti-CD3 monoclonal antibody. J. Immunol.156, 3215–3221 (1996). CASPubMed Google Scholar
Raynaud, F. et al. The calpain 1-α-actinin interaction. Resting complex between the calcium-dependent protease and its target in cytoskeleton. Eur. J. Biochem.270, 4662–4670 (2003). CASPubMed Google Scholar
Cortesio, C. L., Boateng, L. R., Piazza, T. M., Bennin, D. A. & Huttenlocher, A. Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. J. Biol. Chem.286, 9998–10006 (2011). CASPubMedPubMed Central Google Scholar
Lebart, M. C. & Benyamin, Y. Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J.273, 3415–3426 (2006). CASPubMed Google Scholar
Glading, A., Lauffenburger, D. A. & Wells, A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol.12, 46–54 (2002). CASPubMed Google Scholar
Robles, E., Huttenlocher, A. & Gomez, T. M. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron38, 597–609 (2003). CASPubMed Google Scholar
Roumes, H. et al. Calpains: markers of tumor aggressiveness? Exp. Cell Res.316, 1587–1599 (2010). CASPubMed Google Scholar
Perrin, B. J., Amann, K. J. & Huttenlocher, A. Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol. Biol. Cell17, 239–250 (2006). CASPubMedPubMed Central Google Scholar
Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol.160, 267–277 (2003). CASPubMedPubMed Central Google Scholar
Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol.5, 711–719 (2003). CASPubMed Google Scholar
Sanz-Moreno, V. & Marshall, C. J. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr. Opin. Cell Biol.22, 690–696 (2010). CASPubMed Google Scholar
Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol.9, 893–904 (2007). CASPubMed Google Scholar
Carragher, N. O. et al. Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene25, 5726–5740 (2006). CASPubMed Google Scholar
Carragher, N. O. Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr. Pharm. Des12, 615–638 (2006). CASPubMed Google Scholar
Cortesio, C. L. et al. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol.180, 957–971 (2008). CASPubMedPubMed Central Google Scholar
Vosler, P. S., Brennan, C. S. & Chen, J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol. Neurobiol.38, 78–100 (2008). CASPubMedPubMed Central Google Scholar
Raynaud, F. & Marcilhac, A. Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J.273, 3437–3443 (2006). CASPubMed Google Scholar
Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci.23, 20–26 (2000). PubMed Google Scholar
Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell81, 27–40 (1995). This study identified genetic mutations in calpain 3 as a causative factor in LGMD2A. CASPubMed Google Scholar
Tan, Y., Wu, C., De Veyra, T. & Greer, P. A. Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J. Biol. Chem.281, 17689–17698 (2006). An interesting study investigating the role of calpain in apoptosis and survival in response to various stimuli. CASPubMed Google Scholar
Gonen, H., Shkedy, D., Barnoy, S., Kosower, N. S. & Ciechanover, A. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett.406, 17–22 (1997). CASPubMed Google Scholar
Kubbutat, M. H. & Vousden, K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol.17, 460–468 (1997). CASPubMedPubMed Central Google Scholar
Pariat, M. et al. Proteolysis by calpains: a possible contribution to degradation of p53. Mol. Cell. Biol.17, 2806–2815 (1997). CASPubMedPubMed Central Google Scholar
Atencio, I. A., Ramachandra, M., Shabram, P. & Demers, G. W. Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ.11, 247–253 (2000). CASPubMed Google Scholar
Benetti, R. et al. The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO J.20, 2702–2714 (2001). CASPubMedPubMed Central Google Scholar
Sedarous, M. et al. Calpains mediate p53 activation and neuronal death evoked by DNA damage. J. Biol. Chem.278, 26031–26038 (2003). CASPubMed Google Scholar
Han, Y., Weinman, S., Boldogh, I., Walker, R. K. & Brasier, A. R. Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κb activation. J. Biol. Chem.274, 787–794 (1999). CASPubMed Google Scholar
Pianetti, S., Arsura, M., Romieu-Mourez, R., Coffey, R. J. & Sonenshein, G. E. Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene20, 1287–1299 (2001). This study implicated that calpain caused NF-κB activation, rather than IκB, following ERBB2 signalling via PI3K and AKT. CASPubMed Google Scholar
Lee, F. Y. et al. mu-Calpain regulates receptor activator of NF-κB ligand (RANKL)-supported osteoclastogenesis via NF-κB activation in RAW 264.7 cells. J. Biol. Chem.280, 29929–29936 (2005). CASPubMed Google Scholar
Shumway, S. D., Maki, M. & Miyamoto, S. The PEST domain of IκBα is necessary and sufficient for in vitro degradation by mu-calpain. J. Biol. Chem.274, 30874–30881 (1999). CASPubMed Google Scholar
Baghdiguian, S. et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IκB α/NF-κB pathway in limb-girdle muscular dystrophy type 2A. Nature Med.5, 503–511 (1999). CASPubMed Google Scholar
Chen, F. et al. Impairment of NF-κB activation and modulation of gene expression by calpastatin. Am. J. Physiol. Cell Physiol.279, C709–C716 (2000). CASPubMed Google Scholar
Small, G. W., Chou, T. Y., Dang, C. V. & Orlowski, R. Z. Evidence for involvement of calpain in c-Myc proteolysis in vivo. Arch. Biochem. Biophys.400, 151–161 (2002). CASPubMed Google Scholar
Conacci-Sorrell, M., Ngouenet, C. & Eisenman, R. N. Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell142, 480–493 (2010). This work demonstrates that calpain can cleave the proto-oncogeneMycto Myc-nick resulting in altered cell morphology. CASPubMedPubMed Central Google Scholar
Niapour, M., Yu, Y. & Berger, S. A. Regulation of calpain activity by c-Myc through calpastatin and promotion of transformation in c-Myc-negative cells by calpastatin suppression. J. Biol. Chem.283, 21371–21381 (2008). CASPubMed Google Scholar
Wang, X. D., Rosales, J. L., Magliocco, A., Gnanakumar, R. & Lee, K. Y. Cyclin E in breast tumors is cleaved into its low molecular weight forms by calpain. Oncogene22, 769–774 (2003). CASPubMed Google Scholar
Schollmeyer, J. E. Calpain II involvement in mitosis. Science240, 911–913 (1988). CASPubMed Google Scholar
Delmas, C. et al. MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. J. Biol. Chem.278, 12443–12451 (2003). CASPubMed Google Scholar
Bertoli, C., Copetti, T., Lam, E. W., Demarchi, F. & Schneider, C. Calpain small-1 modulates Akt/FoxO3A signaling and apoptosis through PP2A. Oncogene28, 721–733 (2009). CASPubMed Google Scholar
Gafni, J., Cong, X., Chen, S. F., Gibson, B. W. & Ellerby, L. M. Calpain-1 cleaves and activates caspase-7. J. Biol. Chem.284, 25441–25449 (2009). This study demonstrated that calpain could cleave and activate recombinant caspase 7 to produce a distinctly active form of the enzyme. CASPubMedPubMed Central Google Scholar
Chua, B. T., Guo, K. & Li, P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J. Biol. Chem.275, 5131–5135 (2000). CASPubMed Google Scholar
Tan, Y. et al. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem.281, 16016–16024 (2006). CASPubMed Google Scholar
Martinez, J. A. et al. Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis15, 1480–1493 (2010). CASPubMed Google Scholar
Barbero, S. et al. Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res.69, 3755–3763 (2009). CASPubMedPubMed Central Google Scholar
Wood, D. E. et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene17, 1069–1078 (1998). CASPubMed Google Scholar
Gao, G. & Dou, Q. P. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J. Cell. Biochem.80, 53–72 (2000). CASPubMed Google Scholar
Mandic, A. et al. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol. Cell. Biol.22, 3003–3013 (2002). CASPubMedPubMed Central Google Scholar
Gil-Parrado, S. et al. Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J. Biol. Chem.277, 27217–27226 (2002). CASPubMed Google Scholar
Li, B. & Dou, Q. P. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl Acad. Sci. USA97, 3850–3855 (2000). CASPubMedPubMed Central Google Scholar
Toyota, H. et al. Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett.189, 221–230 (2003). CASPubMed Google Scholar
Lin, L., Ye, Y. & Zakeri, Z. p53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death. Cell Death Differ.13, 141–150 (2006). PubMed Google Scholar
Fettucciari, K. et al. Group B Streptococcus induces macrophage apoptosis by calpain activation. J. Immunol.176, 7542–7556 (2006). CASPubMed Google Scholar
Hirai, S., Kawasaki, H., Yaniv, M. & Suzuki, K. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett.287, 57–61 (1991). CASPubMed Google Scholar
Pariat, M. et al. The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochem. J.345, 129–138 (2000). CASPubMedPubMed Central Google Scholar
Kim, M. J. et al. Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. Proc. Natl Acad. Sci. USA99, 9870–9875 (2002). CASPubMedPubMed Central Google Scholar
Porn-Ares, M. I., Samali, A. & Orrenius, S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ.5, 1028–1033 (1998). CASPubMed Google Scholar
Wang, K. K. et al. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch. Biochem. Biophys.356, 187–196 (1998). CASPubMed Google Scholar
Takano, J. et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J. Biol. Chem.280, 16175–16184 (2005). CASPubMed Google Scholar
Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M. & Nicholls, D. G. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J. Biol. Chem.280, 6447–6454 (2005). CASPubMed Google Scholar
Liu, L., Xing, D. & Chen, W. R. Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis. Int. J. Cancer125, 2757–2766 (2009). CASPubMed Google Scholar
Vosler, P. S. et al. Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp. Neurol.218, 213–220 (2009). CASPubMedPubMed Central Google Scholar
Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer7, 961–967 (2007). CAS Google Scholar
Ravikumar, B. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev.90, 1383–1435 (2010). CASPubMed Google Scholar
Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol.8, 1124–1132 (2006). This study was one of the first to assess the contribution of calpain to autophagy, showing that calpain-mediated cleavage of ATG5 provoked apoptotic cell death. CASPubMed Google Scholar
Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol.4, 295–305 (2008). CAS Google Scholar
Cheng, Y. et al. Apoptosis-suppressing and autophagy-promoting effects of calpain on oridonin-induced L929 cell death. Arch. Biochem. Biophys.475, 148–155 (2008). CASPubMed Google Scholar
Demarchi, F., Bertoli, C., Greer, P. A. & Schneider, C. Ceramide triggers an NF-κB-dependent survival pathway through calpain. Cell Death Differ.12, 512–522 (2005). CASPubMed Google Scholar
Li, C. et al. Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IκBα degradation. J. Biol. Chem.285, 16096–16104 (2010). CASPubMedPubMed Central Google Scholar
Liu, T. L. et al. Enhancement of chemosensitivity toward peplomycin by calpastatin-stabilized NF-κB p65 in esophageal carcinoma cells: possible involvement of Fas/Fas-L synergism. Apoptosis11, 1025–1037 (2006). CASPubMed Google Scholar
Mlynarczuk-Bialy, I. et al. Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells. Cancer Res.66, 7598–7605 (2006). CASPubMed Google Scholar
Kulkarni, S. et al. Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer. Oncogene29, 1339–1350 (2010). CASPubMed Google Scholar
Pelley, R. P. et al. Calmodulin-androgen receptor (AR) interaction: calcium-dependent, calpain-mediated breakdown of AR in LNCaP prostate cancer cells. Cancer Res.66, 11754–11762 (2006). CASPubMed Google Scholar
Chen, H. et al. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J. Biol. Chem.285, 2368–2374 (2010). CASPubMed Google Scholar
Libertini, S. J. et al. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res.67, 9001–9005 (2007). CASPubMed Google Scholar
Storr, S. J. et al. Calpain-1 expression is associated with relapse-free survival in breast cancer patients treated with trastuzumab following adjuvant chemotherapy. Int. J. Cancer 8 Mar 2011 (doi:10.1002/ijc.25832). CASPubMed Google Scholar
Del Bello, B., Moretti, D., Gamberucci, A. & Maellaro, E. Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene26, 2717–2726 (2007). CASPubMed Google Scholar
Liu, L. et al. Calpain-mediated pathway dominates cisplatin-induced apoptosis in human lung adenocarcinoma cells as determined by real-time single cell analysis. Int. J. Cancer122, 2210–2222 (2008). CASPubMed Google Scholar
Donkor, I. O. A survey of calpain inhibitors. Curr. Med. Chem.7, 1171–1188 (2000). CASPubMed Google Scholar
Todd, B. et al. A structural model for the inhibition of calpain by calpastatin: crystal structures of the native domain VI of calpain and its complexes with calpastatin peptide and a small molecule inhibitor. J. Mol. Biol.328, 131–146 (2003). CASPubMed Google Scholar
Wang, K. K. et al. An α-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc. Natl Acad. Sci. USA93, 6687–6692 (1996). CASPubMedPubMed Central Google Scholar
Graybill, T. L. et al. Inhibition of human erythrocyte calpain-I by novel quinoline carboxamides. Bioorg. Med. Chem. Lett.5, 387–392 (1995). CAS Google Scholar
Zatz, M. & Starling, A. Calpains and disease. N. Engl. J. Med.352, 2413–2423 (2005). CASPubMed Google Scholar
Biswas, S., Harris, F., Dennison, S., Singh, J. & Phoenix, D. A. Calpains: targets of cataract prevention? Trends Mol. Med.10, 78–84 (2004). CASPubMed Google Scholar
Shields, D. C., Schaecher, K. E., Saido, T. C. & Banik, N. L. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl Acad. Sci. USA96, 11486–11491 (1999). CASPubMedPubMed Central Google Scholar
Mani, S. K. et al. Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.297, H1744–H1751 (2009). CASPubMedPubMed Central Google Scholar
Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet.26, 163–175 (2000). CASPubMed Google Scholar
Saez, M. E. et al. Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels. BMC Med. Genet.8, 1 (2007). PubMedPubMed Central Google Scholar
Gonzalez, A. et al. Specific haplotypes of the CALPAIN-5 gene are associated with polycystic ovary syndrome. Hum. Reprod.21, 943–951 (2006). CASPubMed Google Scholar
Penna, I., Du, H., Ferriani, R. & Taylor, H. S. Calpain5 expression is decreased in endometriosis and regulated by HOXA10 in human endometrial cells. Mol. Hum. Reprod.14, 613–618 (2008). CASPubMedPubMed Central Google Scholar
Kerbiriou, M., Teng, L., Benz, N., Trouve, P. & Ferec, C. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells. PLoS ONE4, e8436 (2009). PubMedPubMed Central Google Scholar