orthomodular lattice (original) (raw)

Orthogonality Relations

Let L be an orthocomplemented lattice and a,b∈L. a is said to be orthogonalMathworldPlanetmathPlanetmath to b if a≤b⟂, denoted by a⟂b. If a≤b⟂, then b=b⟂⟂≤a⟂, so ⟂ is a symmetric relationMathworldPlanetmath on L. It is easy to see that, for any a,b∈L, a⟂b implies a∧b=0, and a⟂a⟂.

For any a∈L, define M⁢(a):={c∈L∣c⟂a⁢ and ⁢1=c∨a}. An element of M⁢(a) is called an orthogonal complementMathworldPlanetmath of a. We have a⟂∈M⁢(a), and any orthogonal complement of a is a complementPlanetmathPlanetmath of a.

If we replace the 1 in M⁢(a) by an arbitrary element b≥a, then we have the set

M⁢(a,b):={c∈L∣c⟂a⁢ and ⁢b=c∨a}.

An element of M⁢(a,b) is called an orthogonal complement of a relative to b. Clearly, M⁢(a)=M⁢(a,1). Also, for a,c≤b, c∈M⁢(a,b) iff a∈M⁢(c,b). As a result, we can define a symmetricPlanetmathPlanetmathPlanetmath binary operator ⊕ on [0,b], given by b=a⊕c iff c∈M⁢(a,b). Note that b=b⊕0.

Before the main definition, we define one more operationMathworldPlanetmath: b-a:=b∧a⟂. Some properties: (1) a-a=0, a-0=a, 0-a=0, a-1=0, and 1-a=a⟂; (2) b-a=a⟂-b⟂; and (3) if a≤b, then a⟂(b-a) and a⊕(b-a)≤b.

Definition

A latticeMathworldPlanetmath L is called an orthomodular lattice if

    1. L is orthocomplemented, and
    1. (orthomodular law) if x≤y, then y=x⊕(y-x).

The orthomodular law can be restated as follows: if x≤y, theny=x∨(y∧x⟂). Equivalently, x≤y implies y=(y∧x)∨(y∧x⟂). Note that the equation is automatically true in an arbitrary distributive latticeMathworldPlanetmath, even without the assumptionPlanetmathPlanetmath that x≤y.

For example, the lattice ℂ⁢(H) of closed subspaces of a hilbert space H is orthomodular. ℂ⁢(H) is modular iff H is finite dimensional. In addition, if we give the set ℙ⁢(H) of (bounded) projection operators on H an ordering structureMathworldPlanetmath by defining P≤Q iff P⁢(H)≤Q⁢(H), then ℙ⁢(H) is lattice isomorphic to ℂ⁢(H), and hence orthomodular.

A simple example of an orthocomplemented lattice that is not orthomodular is the benzene:

\xymatrix⁢&⁢1⁢\ar⁢@-[l⁢d]⁢\ar⁢@-[r⁢d]⁢&⁢b⁢\ar⁢@-[d]⁢&⁢&⁢a⟂⁢\ar⁢@-[d]⁢a⁢\ar⁢@-[r⁢d]⁢&⁢&⁢b⟂⁢\ar⁢@-[l⁢d]⁢&⁢0⁢&

Note that a≤b, but a∨(b∧a⟂)=a∨0=a≠b.

An nice example of an orthomodular lattice that is not modular can be found in the reference below.

Remarks.

References

Title orthomodular lattice
Canonical name OrthomodularLattice
Date of creation 2013-03-22 16:33:06
Last modified on 2013-03-22 16:33:06
Owner CWoo (3771)
Last modified by CWoo (3771)
Numerical id 10
Author CWoo (3771)
Entry type Definition
Classification msc 06C15
Classification msc 81P10
Classification msc 03G12
Related topic OrthocomplementedLattice
Related topic LatticeOfProjections
Defines orthomodular poset
Defines orthogonal
Defines orthogonal complement
Defines relative orthogonal complement