A complex task? Direct modulation of transcription factors with small molecules (original) (raw)

Papers of particular interest, published within the period of the review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Marr MT, 2nd, Isogai Y, Wright KJ, Tjian R. Coactivator cross-talk specifies transcriptional output. Genes Dev. 2006;20:1458–1469. [PMC free article] [PubMed] [Google Scholar]

2. Darnell JE., Jr Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2:740–749. [PubMed] [Google Scholar]

3. Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. [PubMed] [Google Scholar]

4. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004;14:283–291. [PubMed] [Google Scholar]

5. Fuchs T, Gavarini S, Saunders-Pullman R, Raymond D, Erlich ME, Bressman SB, Ozelius LJ. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet. 2009;41:286–288. [PubMed] [Google Scholar]

6. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HKA, Hirschhorn JN, Cantor AB, Orkin SH. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–1842. [PubMed] [Google Scholar]

7. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat Cell Biol. 2000;2:84–89. [PubMed] [Google Scholar]

8. Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest. 2000;106:1071–1075. [PMC free article] [PubMed] [Google Scholar]

9. Nickols NG, Jacobs CS, Farkas ME, Dervan PB. Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. ACS Chem Biol. 2007;2:561–571. [PMC free article] [PubMed] [Google Scholar]

10. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–188. [PMC free article] [PubMed] [Google Scholar]

11. Brivanlou AH, Darnell JE., Jr Signal transduction and the control of gene expression. Science. 2002;295:813–818. [PubMed] [Google Scholar]

12. Majmudar CY, Mapp AK. Chemical approaches to transcriptional regulation. Curr Opin Chem Biol. 2005;9:467–474. [PubMed] [Google Scholar]

13. Arndt H-D. Small molecule modulators of transcription. Angew Chem Int Ed Engl. 2006;45:4552–4560. [PubMed] [Google Scholar]

14. Berg T. Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol. 2008;12:464–471. [PubMed] [Google Scholar]

15. Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA. Genomic analysis of the nuclear hormone receptor family: new insights into structure, regulation, and evolution from the rate genome. Genome Res. 2004;14:580–590. [PMC free article] [PubMed] [Google Scholar]

17. Yuan X, Ta TC, Lin M, Evans JR, Dong Y, Bolotin E, Sherman MA, Forman BM, Sladek FM. Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS One. 2009;4:e5609. [PMC free article] [PubMed] [Google Scholar]• The authors describe a general strategy involving affinity isolation/mass spectrometry to identify endogenous ligands for orphan receptors and other lipid binding proteins under physiologically relevant conditions.

18. Le Guével R, Oger F, Lecorgne A, Dudasova Z, Chevance S, Bondon A, Barath P, Simonneaux G, Salbert G. Identification of small molecule regulators of the nuclear receptor HNF4α based on napthofuran scaffolds. Bioorg Med Chem. 2009;17:7021–7030. [PubMed] [Google Scholar]• The authors identified novel activators of the nuclear receptor HNFαincluding a compound that interacts directly with the ligand binding domain of the transcription factor.

19. Schäcke H, Schottelius A, Döcke W-D, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA. 2004;101:227–232. [PMC free article] [PubMed] [Google Scholar]

20. Arnold LA, Estébanez-Perpiñá E, Togashi M, Jouravel N, Shelat A, McReynolds AC, Mar E, Nguyen P, Baxter JD, Fletterick RJ, Webb P, Guy RK. Discovery of small molecule inhibitors of the interaction of the thyroid hormone receptor with transcriptional coregulators. J Biol Chem. 2005;280:43048–43055. [PubMed] [Google Scholar]

21. Hwang JY, Arnold LA, Zhu F, Kosinski A, Mangano TJ, Setola V, Roth BL, Guy RK. Improvement of pharmacological properties of irreversible thyroid receptor coactivator binding inhibitors. J Med Chem. 2009;52:3892–3901. [PMC free article] [PubMed] [Google Scholar]

22. Gunther JR, Moore TW, Collins ML, Katzenellenbogen JA. Amphipathic benzenes are designed inhibitors of the estrogen receptor alpha/steroid receptor coactivator interaction. ACS Chem Biol. 2008;3:282–286. [PMC free article] [PubMed] [Google Scholar]

23. LaFrate AL, Gunther JR, Carlson KE, Katzenellenbogen JA. Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor. Bioorg Med Chem. 2008;16:10075–10084. [PMC free article] [PubMed] [Google Scholar]

24. Parent AA, Gunther JR, Katzenellenbogen JA. Blocking estrogen signaling after the hormone: pyrimidine-core inhibitors of estrogen receptor-coactivator binding. J Med Chem. 2008;51:6512–6530. [PMC free article] [PubMed] [Google Scholar]

25. Gunther JR, Parent AA, Katzenellenbogen JA. Alternative inhibition of androgen receptor signaling: peptidomimetic pyrimidines as direct androgen receptor/coactivator disruptors. ACS Chem Biol. 2009;4:435–440. [PMC free article] [PubMed] [Google Scholar]•• The authors describe the development of compounds that selectively disrupt interactions between the androgen receptor and steroid receptor coactivator and that inhibit transcriptional activity in LNCaP androgen-sensitive human prostate adenocarcinoma cells.

26. Schulman IG, Heyman RA. The flip side: identifying small molecule regulators of nuclear receptors. Chem Biol. 2004;11:639–646. [PubMed] [Google Scholar]

27. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–3016. [PubMed] [Google Scholar]

28. Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003;112:193–205. [PubMed] [Google Scholar]

30. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van Y-Y, Romero P, Cortese MS, Uversky VN, Dunker AK. Rational drug design via intrinsically disordered protein. Trends Biotechnol. 2006;24:435–442. [PubMed] [Google Scholar]

31. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc. 2009;131:7390–7401. [PubMed] [Google Scholar]•• The authors used various biophysical methods to establish the presence of novel small-molecule binding sites on c-Myc. They also studied conformational changes of intrinsically disordered c-Myc upon binding to known inhibitors of Myc/Max heterodimer formation.

32. Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL, Vogt PK. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA. 2002;99:3830–3835. [PMC free article] [PubMed] [Google Scholar]

33. Lu X, Vogt PK, Boger DL, Lunec J. Disruption of the Myc transcriptional function by a small-molecule antagonist of MYC/MAX dimerization. Oncol Rep. 2008;19:825–830. [PubMed] [Google Scholar]

34. Xu Y, Shi J, Yamamoto N, Moss JA, Vogt PK, Janda KD. A credit-card library approach for disrupting protein-protein interactions. Bioorg Med Chem. 2006;14:2660–2673. [PubMed] [Google Scholar]

35. Shi J, Stover JS, Whitby LR, Vogt PK, Boger DL. Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation. Bioorg Med Chem Lett. 2009;19:6038–6041. [PMC free article] [PubMed] [Google Scholar]

36. Kiessling A, Sperl B, Hollis A, Eick D, Berg T. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem Biol. 2006;13:745–751. [PubMed] [Google Scholar]

37. Kiessling A, Wiesinger R, Sperl B, Berg T. Selective inhibition of c-Myc/Max dimerization by a pyrazolo[1,5-a]pyrimidine. ChemMedChem. 2007;2:627–630. [PubMed] [Google Scholar]

38. Yin X, Giap C, Lazo JS, Prochownik EV. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene. 2003;22:6151–6159. [PubMed] [Google Scholar]

39. Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ, Prochownik EV. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408. [PubMed] [Google Scholar]

40. Mustata G, Follis AV, Hammoudeh DI, Metallo SJ, Wang H, Prochownik EV, Lazo JS, Bahar I. Discovery of novel myc-max heterodimer disruptors with a three-dimensional pharmacophore model. J Med Chem. 2009;52:1247–1250. [PMC free article] [PubMed] [Google Scholar]

41. Follis AV, Hammoudeh DI, Daab AT, Metallo SJ. Small-molecule perturbation of competing interactions between c-Myc and Max. Bioorg Med Chem Lett. 2009;19:807–810. [PubMed] [Google Scholar]

42. Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL. Efficacy, pharmacokinetics, tissue distribution, and metabolism of the Myc-Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidene]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol. 2009;63:615–625. [PMC free article] [PubMed] [Google Scholar]

43. Follis AV, Hammoudeh DI, Wang H, Prochownik EV, Metallo SJ. Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem Biol. 2008;15:1149–1155. [PubMed] [Google Scholar]•• The authors present data to suggest that previously identified Myc ligands induce a global conformational disordering thereby limiting its ability to interact with Max and form the highly ordered heterodimer

44. Mo H, Henriksson M. Identification of small molecules that induce apoptosis in a Myc-dependent manner and inhibit Myc-driven transformation. Proc Natl Acad Sci USA. 2006;16:6344–6349. [PMC free article] [PubMed] [Google Scholar]

45. Mo H, Vita M, Crespin M, Henriksson M. Myc overexpression enhances apoptosis induced by small molecules. Cell Cycle. 2006;5:2191–2194. [PubMed] [Google Scholar]

46. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription. Proc Natl Acad Sci USA. 2004;101:12682–12687. [PMC free article] [PubMed] [Google Scholar]

47. Best JL, Amezcua CA, Mayr B, Flechner L, Murawsky CM, Emerson B, Zor T, Gardner KH, Montminy M. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA. 2004;101:17622–17627. [PMC free article] [PubMed] [Google Scholar]

48. Xiao X, Yu P, Lim HS, Sikder D, Kodadek T. A cell-permeable synthetic transcription factor mimic. Angew Chem Int Ed Engl. 2007;46:2865–2868. [PubMed] [Google Scholar]

49. Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK. Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol. 2009;4:335–344. [PMC free article] [PubMed] [Google Scholar]

50. Rishi V, Potter T, Laudeman J, Reinhart R, Silvers T, Selby M, Stevenson T, Krosky P, Stephen AG, Acharya A, Moll J, Oh WJ, Scudiero D, Shoemaker RH, Vinson C. A high-throughput fluorescence anisotropy screen that identifies small molecule inhibitors of the DNA-binding of B-ZIP transcription factors. Anal Biochem. 2005;340:259–271. [PubMed] [Google Scholar]

51. Ng PY, Tang Y, Knosp WM, Stadler HS, Shaw JT. Synthesis of diverse lactam carboxamides leading to the discovery of a new transcription-factor inhibitor. Angew Chem Int Ed Engl. 2007;46:5352–5355. [PubMed] [Google Scholar]

52. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudala L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol. 2007;14:1186–1197. [PubMed] [Google Scholar]

53. Ma Y, Kurtyka CA, Boyapalle S, Sung SS, Lawrence H, Guida W, Cress WD. A small-molecule E2F inhibitor blocks growth in a melanoma culture model. Cancer Res. 2008;68:6292–6299. [PMC free article] [PubMed] [Google Scholar]•• The authors used the crystal structure of the E2F4/DP2 heterodimer bound to DNA to guide a virtual screen to identify small molecules that inhibit heterodimer binding to DNA. The screen yielded a compound that disrupts DNA-binding in EMSA assays and is a potent inhibitor of melanocyte proliferation and invasion in a three-dimensional culture model system.

54. Berg T. Signal transducers and activators of transcription as targets for small organic molecules. ChemBioChem. 2008;9:2039–2044. [PubMed] [Google Scholar]

55. Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate. 2008;68:269–280. [PubMed] [Google Scholar]

56. Turkson J, Zhang S, Mora LB, Burns A, Sebti S, Jove R. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem. 2005;280:32979–32988. [PubMed] [Google Scholar]

57. Song H, Wang R, Wang S, Lin J. A low molecular weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA. 2005;13:4700–4705. [PMC free article] [PubMed] [Google Scholar]

58. Bhasin D, Cisek K, Pandharkar T, Regan N, Li C, Pandit B, Lin J, Li P-K. Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg Med Chem Lett. 2008;18:391–395. [PubMed] [Google Scholar]

59. Gunning PT, Katt WP, Glenn M, Siddiquee K, Kim JS, Jove R, Sebti SM, Turkson J, Hamilton AD. Isoform selective inhibition of STAT1 or STAT3 homo-dimerization via peptidomimetic probes: structural recognition of STAT SH2 domains. Bioorg Med Chem Lett. 2007;17:1875–1878. [PubMed] [Google Scholar]

60. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA. 2007;104:7391–7396. [PMC free article] [PubMed] [Google Scholar]

61. Siddiquee KA, Gunning PT, Glenn M, Katt WP, Zhang S, Schrock C, Sebti SM, Hamilton AD, Turkson J. An oxazole-based small-molecule Stat3 inhibitor that modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol. 2007;2:787–798. [PubMed] [Google Scholar]

62. Schust J, Sperl B, Hollis A, Mayer TY, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–1242. [PubMed] [Google Scholar]

63. Fletcher S, Singh J, Zhang X, Yue P, Page BD, Sharmeen S, Shahani VM, Zhao W, Schimmer AD, Turkson J, Gunnin PT. Disruption of transcriptionally active Stat3 dimers with non-phosphorylated, salicylic acid-based small molecules: potent in vitro and tumor cell activities. Chembiochem. 2009;10:1959–1964. [PMC free article] [PubMed] [Google Scholar]

64. Muller J, Sperl B, Reindl W, Kiessling A, Berg T. Discovery of chromone-based inhibitors of the transcription factor STAT5. ChemBioChem. 2008;9:723–727. [PubMed] [Google Scholar]

65. Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009;13:2780–2786. [PMC free article] [PubMed] [Google Scholar]

66. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 2005;65:9047–9055. [PubMed] [Google Scholar]

67. Park EJ, Kong D, Fisher R, Cardellina J, Shoemaker RH, Melillo G. Targeting the PAS-A domain of HIF-1alpha for development of small molecule inhibitors of HIF-1. Cell Cycle. 2006;5:1847–1853. [PubMed] [Google Scholar]

68. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA. 2009;106:17910–17915. [PMC free article] [PubMed] [Google Scholar] Retracted

69. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2alpa PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci USA. 2009;106:450–455. [PMC free article] [PubMed] [Google Scholar]

70. Key J, Scheuermann TH, Anderson OC, Daggett V, Gardner KH. Principles of ligand binding within a completely buried cavity in the HIF2alpha PAS-B. J Am Chem Soc. 2009;131:17647–17654. [PMC free article] [PubMed] [Google Scholar]•• The authors use structural and biophysical methods as well as molecular dynamics simulations to characterize binding of small molecules to a solvent inaccessible internal cavity of HIF2alpha PAS-B. The authors propose that a conformational equilibrium exists between a highly populated ligand-inaccessible ground state and a binding-competent state characterized by increased dynamics and altered structure.

71. Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell. 2004;6:33–43. [PubMed] [Google Scholar]

72. Block KM, Wang H, Szabó LZ, Polaske NW, Henchey LK, Dubey R, Kushal S, László CF, Makhoul J, Song Z, Meuillet EJ, Olenyuk BZ. Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc. 2009;131:18078–18088. [PMC free article] [PubMed] [Google Scholar]• The authors rationally design, synthesize and evaluate a simplified ETP inhibitors of the interaction between HIF-1α and the p300/CBP coactivator derived from the natural product chetomin that displays comparable activity and reduced toxicity.

73. Zhu S, Wurdak H, Wang J, Lyssiotas CA, Peters EC, Cho CY, Wu X, Schultz PG. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–426. [PubMed] [Google Scholar]•• The authors used high-content screening followed by affinity-based methods to identify a small molecule that increases the efficiency of differentiation of embryonic stem cells and interacts directly with the transcription factor NME2.

74. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet. 1998;32:495–519. [PubMed] [Google Scholar]

75. Gery S, Koeffler HP. Transcription factors in hematopoietic malignancies. Curr Opin Gen Dev. 2007;17:78–83. [PubMed] [Google Scholar]

76. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–245. [PubMed] [Google Scholar]

77. Fazi F, Zardo G, Gelmetti V, Travaglini L, Ciolfi A, Di Croce L, Rosa A, Bozzoni I, Grignani F, Lo-Coco F, Pelicci PG, Nervi C. Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood. 2007;109:4432–4440. [PubMed] [Google Scholar]

78. Erzikan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou T-H, Dakshanamurthy S, Brown ML, Üren A, Toretsky JA. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–756. [PMC free article] [PubMed] [Google Scholar]•• This study describes the use of direct binding assays to identify small molecules that target an oncogenic translocation fusion protein involving a transcription factor. The authors identified a small molecule that specifically blocks an interaction between the oncogenic transcription factor translocation product and a normal cellular binding partner that is required for oncogenic activity. This study is a proof of principle for targeting oncogenic transcription factors that result from chromosomal translocations.

79. Koehler AN, Shamji AF, Schreiber SL. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J Am Chem Soc. 2003;125:8420–8421. [PubMed] [Google Scholar]

80. Vegas AJ, Fuller JH, Koehler AN. Small-molecule microarrays as tools in ligand discovery. Chem Soc Rev. 2008;37:1385–1394. [PMC free article] [PubMed] [Google Scholar]