sctransform: Variance Stabilizing Transformations for Single Cell UMI Data (original) (raw)
A normalization method for single-cell UMI count data using a variance stabilizing transformation. The transformation is based on a negative binomial regression model with regularized parameters. As part of the same regression framework, this package also provides functions for batch correction, and data correction. See Hafemeister and Satija (2019) <doi:10.1186/s13059-019-1874-1>, and Choudhary and Satija (2022) <doi:10.1186/s13059-021-02584-9> for more details.
Version: | 0.4.1 |
---|---|
Depends: | R (≥ 3.6.0) |
Imports: | dplyr, magrittr, MASS, Matrix (≥ 1.5-0), methods, future.apply, future, ggplot2, reshape2, rlang, gridExtra, matrixStats |
LinkingTo: | RcppArmadillo, Rcpp (≥ 0.11.0) |
Suggests: | irlba, testthat, knitr |
Enhances: | glmGamPoi |
Published: | 2023-10-19 |
DOI: | 10.32614/CRAN.package.sctransform |
Author: | Christoph Hafemeister [aut], Saket Choudhary [aut, cre], Rahul Satija [ctb] |
Maintainer: | Saket Choudhary |
BugReports: | https://github.com/satijalab/sctransform/issues |
License: | GPL-3 | file |
URL: | https://github.com/satijalab/sctransform |
NeedsCompilation: | yes |
SystemRequirements: | C++17 |
Citation: | sctransform citation info |
Materials: | README NEWS |
CRAN checks: | sctransform results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=sctransformto link to this page.