Риман, Бернхард | это... Что такое Риман, Бернхард? (original) (raw)
Бернхард Риман
Георг Фридрих Бернхард Риман (нем. Georg-Friedrich-Bernhard Riemann, 17 сентября 1826, Брезеленц, Ганновер — 20 июля 1866, Селаска, Италия, близ Лаго-Маджоре) — немецкий математик. За свою короткую жизнь (всего 10 лет трудов) он преобразовал сразу несколько разделов математики.
Содержание
- 1 Биография
- 2 Научная деятельность
- 3 Список терминов, связанных с именем Римана
- 4 Примечания
- 5 Труды на русском языке
- 6 Литература
Биография
Родился в семье бедного пастора, вторым из шести его детей, в деревне Брезеленц, недалеко от Данненберга. Мать Римана умерла от туберкулёза, когда он ещё учился в школе; от этой же болезни умерли две его сестры.
Наклонности к математике проявлялись у молодого Римана ещё в детстве, но, уступая желанию отца, Риман поступил в 1846 году в Гёттингенский университет для изучения филологии и богословия. Однако здесь он слушает лекции Гаусса и принимает окончательное решение стать математиком.
1847: переходит в Берлинский университет, слушает лекции Дирихле, Якоби и Штейнера.
1849: возвращается в Гёттинген. Знакомится с Вебером, который становится его учителем и близким другом. Годом позже приобретает ещё одного друга — Дедекинда.
Риманова поверхность (комплексный логарифм)
1851: защищает докторскую «Основания теории функций комплексной переменной». В ней Риман ввёл понятие, позже известное как риманова поверхность.
1854: Чтобы претендовать на должность экстраординарного профессора, Риман по уставу должен выступить перед профессорским составом. В присутствии Гаусса Риман читает исторический доклад «О гипотезах, лежащих в основании геометрии». С него начинается риманова геометрия.
Доклад не помог - Римана не утверждают. Однако текст выступления был опубликован, хотя и с большим опозданием (1868), и это стало эпохальным событием для геометрии. В конечном счёте Риман был принят приват-доцентом Гёттингенского университета, читает курс абелевых функций.
1857: публикует классические труды по теории абелевых функций и аналитической теории дифференциальных уравнений. Переведен на должность экстраординарного профессора Гёттингенского университета.
1859: после смерти Дирихле — ординарный профессор Гёттингенского университета. Публикует блестящее исследование о распределении простых чисел и свойствах ζ-функции (функции Римана). Читает лекции по математической физике (изданы посмертно его учениками). Вместе с Дедекиндом совершает поездку в Берлинский университет, где общается с Вейерштрассом, Куммером, Кронекером.
1862: Женится на Эльзе Кох, подруге покойной сестры. У них родилась дочь Ида. К несчастью, вскоре после женитьбы Риман простудился и серьёзно заболел.
1866: в Италии скончался от туберкулёза в возрасте неполных 40 лет. Дедекинд, со слов жены, так описал его смерть [1]:
За день до своей смерти он лежал под смоковницей, его переполняла радость при виде великолепного пейзажа, он работал над своей последней книгой, к сожалению, оставшейся незаконченной. Кончина пришла тихо, без напряжения или агонии смерти; казалось, будто бы он с интересом следил, как душа расставалась с его телом; его жене пришлось дать ему хлеб и вино, он попросил ее передать его любовь домашним, сказав: «Поцелуй наше дитя». Она читала вместе с ним молитву Господню, он не мог больше говорить; со словами «И остави нам долги наша» он благочестиво поднял глаза, она почувствовала, как его рука холодеет в ее руке, и еще через несколько вздохов, его чистое, благородное сердце перестало биться.
Посмертный сборник трудов Римана, подготовленный Дедекиндом, содержал всего один том.
Научная деятельность
Бернхард Риман
В знаменитом докладе «О гипотезах, лежащих в основании геометрии» (нем. Über die Hypothesen, welche der Geometrie zu Grunde Liegеп) Риман определил общее понятие n-мерного многообразия и его метрику в виде произвольной положительно определённой квадратичной формы. Далее Риман обобщил гауссову теорию поверхностей на многомерный случай; при этом впервые появился тензор кривизны и другие понятия римановой геометрии. Существование метрики, по Риману, объясняется либо дискретностью пространства, либо некими физическими силами связи — здесь он предвосхитил общую теорию относительности.
Риман также высказал предположение, что геометрия в микромире может отличаться от трёхмерной евклидовой [2]:
Эмпирические понятия, на которых основывается установление пространственных метрических отношений,— понятия твёрдого тела и светового луча, по-видимому, теряют всякую определённость в бесконечно малом. Поэтому вполне мыслимо, что метрические отношения пространства в бесконечно малом не отвечают геометрическим допущениям; мы действительно должны были бы принять это положение, если бы с его помощью более просто были объяснены наблюдаемые явления.
Глубокие мысли, содержащиеся в этом выступлении, ещё долго стимулировали развитие науки.
Риман создал общую теорию многозначных комплексных функций, построив для них «римановы поверхности». Он использовал не только аналитические, но и не метрические, топологические методы; позднее его труды продолжил Анри Пуанкаре, завершив создание топологии.
Его труд «Теория абелевых функций» был важным шагом в бурном развитии этого раздела анализа в XIX веке. Риман ввёл понятие рода абелевой функции, классифицировал их по этому параметру и вывел топологическое соотношение между родом, числом листов и числом точек ветвления функции.
Вслед за Коши, Риман рассмотрел формализацию понятия интеграла и ввёл своё определение — интеграл Римана. Развил общую теорию тригонометрических рядов, не сводящихся к рядам Фурье.
В аналитической теории чисел большой резонанс имело исследование Риманом распределения простых чисел. Он дал интегральное представление дзета-функции Римана, исследовал её полюса и нули (см. Гипотеза Римана), вывел приближённую формулу для оценки количества простых чисел через интегральный логарифм.
Список терминов, связанных с именем Римана
- Гипотеза Римана
- Дзета-функция Римана
- Интеграл Римана
- Кратный интеграл Римана
- Производная Римана
- Риманова геометрия
- Риманова поверхность
- Сфера Римана
- Сферическая геометрия Римана
- Тензор кривизны Римана
- Условия Коши — Римана
Примечания
- ↑ Стиллвелл Д. Математика и ее история. - Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 285.
- ↑ Риман Б. Сочинения. М.-Л.: ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1948, С. 291.
Труды на русском языке
- Риман Б. Сочинения. М.-Л.: ОГИЗ. ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1948.
Литература
Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. М.: Наука.
Том 1 Математическая логика. Алгебра. Теория чисел. Теория вероятностей. 1978.
Wikimedia Foundation.2010.