Риман, Бернхард | это... Что такое Риман, Бернхард? (original) (raw)

Бернхард Риман

Георг Фридрих Бернхард Риман (нем. Georg-Friedrich-Bernhard Riemann, 17 сентября 1826, Брезеленц, Ганновер20 июля 1866, Селаска, Италия, близ Лаго-Маджоре) — немецкий математик. За свою короткую жизнь (всего 10 лет трудов) он преобразовал сразу несколько разделов математики.

Содержание

Биография

Родился в семье бедного пастора, вторым из шести его детей, в деревне Брезеленц, недалеко от Данненберга. Мать Римана умерла от туберкулёза, когда он ещё учился в школе; от этой же болезни умерли две его сестры.

Наклонности к математике проявлялись у молодого Римана ещё в детстве, но, уступая желанию отца, Риман поступил в 1846 году в Гёттингенский университет для изучения филологии и богословия. Однако здесь он слушает лекции Гаусса и принимает окончательное решение стать математиком.

1847: переходит в Берлинский университет, слушает лекции Дирихле, Якоби и Штейнера.

1849: возвращается в Гёттинген. Знакомится с Вебером, который становится его учителем и близким другом. Годом позже приобретает ещё одного друга — Дедекинда.

Риманова поверхность (комплексный логарифм)

1851: защищает докторскую «Основания теории функций комплексной переменной». В ней Риман ввёл понятие, позже известное как риманова поверхность.

1854: Чтобы претендовать на должность экстраординарного профессора, Риман по уставу должен выступить перед профессорским составом. В присутствии Гаусса Риман читает исторический доклад «О гипотезах, лежащих в основании геометрии». С него начинается риманова геометрия.

Доклад не помог - Римана не утверждают. Однако текст выступления был опубликован, хотя и с большим опозданием (1868), и это стало эпохальным событием для геометрии. В конечном счёте Риман был принят приват-доцентом Гёттингенского университета, читает курс абелевых функций.

1857: публикует классические труды по теории абелевых функций и аналитической теории дифференциальных уравнений. Переведен на должность экстраординарного профессора Гёттингенского университета.

1859: после смерти Дирихле — ординарный профессор Гёттингенского университета. Публикует блестящее исследование о распределении простых чисел и свойствах ζ-функции (функции Римана). Читает лекции по математической физике (изданы посмертно его учениками). Вместе с Дедекиндом совершает поездку в Берлинский университет, где общается с Вейерштрассом, Куммером, Кронекером.

1862: Женится на Эльзе Кох, подруге покойной сестры. У них родилась дочь Ида. К несчастью, вскоре после женитьбы Риман простудился и серьёзно заболел.

1866: в Италии скончался от туберкулёза в возрасте неполных 40 лет. Дедекинд, со слов жены, так описал его смерть [1]:

За день до своей смерти он лежал под смоковницей, его переполняла радость при виде великолепного пейзажа, он работал над своей последней книгой, к сожалению, оставшейся незаконченной. Кончина пришла тихо, без напряжения или агонии смерти; казалось, будто бы он с интересом следил, как душа расставалась с его телом; его жене пришлось дать ему хлеб и вино, он попросил ее передать его любовь домашним, сказав: «Поцелуй наше дитя». Она читала вместе с ним молитву Господню, он не мог больше говорить; со словами «И остави нам долги наша» он благочестиво поднял глаза, она почувствовала, как его рука холодеет в ее руке, и еще через несколько вздохов, его чистое, благородное сердце перестало биться.

Посмертный сборник трудов Римана, подготовленный Дедекиндом, содержал всего один том.

Научная деятельность

Бернхард Риман

В знаменитом докладе «О гипотезах, лежащих в основании геометрии» (нем. Über die Hypothesen, welche der Geometrie zu Grunde Liegеп) Риман определил общее понятие n-мерного многообразия и его метрику в виде произвольной положительно определённой квадратичной формы. Далее Риман обобщил гауссову теорию поверхностей на многомерный случай; при этом впервые появился тензор кривизны и другие понятия римановой геометрии. Существование метрики, по Риману, объясняется либо дискретностью пространства, либо некими физическими силами связи — здесь он предвосхитил общую теорию относительности.

Риман также высказал предположение, что геометрия в микромире может отличаться от трёхмерной евклидовой [2]:

Эмпирические понятия, на которых основывается установление пространственных метрических отношений,— понятия твёрдого тела и светового луча, по-видимому, теряют всякую определённость в бесконечно малом. Поэтому вполне мыслимо, что метрические отношения пространства в бесконечно малом не отвечают геометрическим допущениям; мы действительно должны были бы принять это положение, если бы с его помощью более просто были объяснены наблюдаемые явления.

Глубокие мысли, содержащиеся в этом выступлении, ещё долго стимулировали развитие науки.

Риман создал общую теорию многозначных комплексных функций, построив для них «римановы поверхности». Он использовал не только аналитические, но и не метрические, топологические методы; позднее его труды продолжил Анри Пуанкаре, завершив создание топологии.

Его труд «Теория абелевых функций» был важным шагом в бурном развитии этого раздела анализа в XIX веке. Риман ввёл понятие рода абелевой функции, классифицировал их по этому параметру и вывел топологическое соотношение между родом, числом листов и числом точек ветвления функции.

Вслед за Коши, Риман рассмотрел формализацию понятия интеграла и ввёл своё определение — интеграл Римана. Развил общую теорию тригонометрических рядов, не сводящихся к рядам Фурье.

В аналитической теории чисел большой резонанс имело исследование Риманом распределения простых чисел. Он дал интегральное представление дзета-функции Римана, исследовал её полюса и нули (см. Гипотеза Римана), вывел приближённую формулу для оценки количества простых чисел через интегральный логарифм.

Список терминов, связанных с именем Римана

Примечания

  1. Стиллвелл Д. Математика и ее история. - Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 285.
  2. Риман Б. Сочинения. М.-Л.: ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1948, С. 291.

Труды на русском языке

Литература

Wikimedia Foundation.2010.