DLMF: Chapter 5 Gamma Function (original) (raw)
R. A. Askey Department of Mathematics, University of Wisconsin, Madison, Wisconsin. R. Roy Department of Mathematics and Computer Science, Beloit College, Beloit, Wisconsin.
ⓘ
Acknowledgements:
This chapter is based in part onAbramowitz and Stegun (1964, Chapter 6) by P. J. Davis.
Notes:
The main references used in writing this chapter areAndrews et al. (1999),Carlson (1977b),Erdélyi et al. (1953a),Nielsen (1906a),Olver (1997b),Paris and Kaminski (2001),Temme (1996b), andWhittaker and Watson (1927).
Referenced by:
New Associate Editors for the DLMF,Profile Gergő Nemes,Profile Richard A. Askey,Profile Ranjan Roy,Profile Simon Ruijsenaars,§ ‣ Chapter Authors,§ ‣ Chapter Authors,§ ‣ Associate Editors,§ ‣ Associate Editors,Version 1.2.0 (March 27, 2024),§ ‣ Software Cross Index
Permalink:
Notation
Properties
- 5.2 Definitions
- 5.3 Graphics
- 5.4 Special Values and Extrema
- 5.5 Functional Relations
- 5.6 Inequalities
- 5.7 Series Expansions
- 5.8 Infinite Products
- 5.9 Integral Representations
- 5.10 Continued Fractions
- 5.11 Asymptotic Expansions
- 5.12 Beta Function
- 5.13 Integrals
- 5.14 Multidimensional Integrals
- 5.15 Polygamma Functions
- 5.16 Sums
- 5.17 Barnes’ G-Function (Double Gamma Function)
- 5.18 q-Gamma and q-Beta Functions
Applications
Computation