std::ranges::fold_left_with_iter, std::ranges::fold_left_with_iter_result - cppreference.com (original) (raw)

Defined in header
Call signature
(1)
template< std::input_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-left-foldable */<T, I> F > constexpr /* see description */ fold_left_with_iter( I first, S last, T init, F f ); (since C++23) (until C++26)
template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F > constexpr /* see description */ fold_left_with_iter( I first, S last, T init, F f ); (since C++26)
(2)
template< ranges::input_range R, class T, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr /* see description */ fold_left_with_iter( R&& r, T init, F f ); (since C++23) (until C++26)
template< ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr /* see description */ fold_left_with_iter( R&& r, T init, F f ); (since C++26)
Helper concepts
template< class F, class T, class I >concept /* indirectly-binary-left-foldable */ = /* see description */; (3) (exposition only*)
Helper class template
template< class I, class T > using fold_left_with_iter_result = ranges::in_value_result<I, T>; (4) (since C++23)

Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(init, x1), x2), ...), xn), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_left_with_iter behaves like std::accumulate's overload that accepts a binary predicate.

The behavior is undefined if [first, last) is not a valid range.

  1. The range is [first, last).

  2. Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.

  3. Equivalent to:

Helper concepts
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; (3A) (exposition only*)
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; (3B) (exposition only*)
  1. The return type alias. See "Return value" section for details.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to fold
r - the range of elements to fold
init - the initial value of the fold
f - the binary function object

[edit] Return value

Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.

  1. An object of type ranges::fold_left_with_iter_result<I, U>.

If the range is empty, the return value is obtained via the expression equivalent to return {std::move(first), U(std::move(init))};.

  1. Same as (1) except that the return type is ranges::fold_left_with_iter_result<ranges::borrowed_iterator_t<R>, U>.

[edit] Possible implementations

class fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for S, class T = std::iter_value_t, / indirectly-binary-left-foldable /<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl(std::move(first), std::move(last), std::move(init), std::ref(f)); }   template<ranges::input_range R, class T = ranges::range_value_t, / indirectly-binary-left-foldable */<T, ranges::iterator_t> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t> ( ranges::begin(r), ranges::end(r), std::move(init), std::ref(f) ); } };   inline constexpr fold_left_with_iter_fn fold_left_with_iter;

[edit] Complexity

Exactly ranges::distance(first, last) applications of the function object f.

[edit] Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R>
ranges::fold_left_first_with_iter left first element (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R>
Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms
__cpp_lib_algorithm_default_value_type 202403L (C++26) List-initialization for algorithms (1,2)

[edit] Example

#include #include #include #include #include #include #include   int main() { namespace ranges = std::ranges;   std::vector v{1, 2, 3, 4, 5, 6, 7, 8};   auto sum = ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus()); assert(sum.value == 42); assert(sum.in == v.end());   auto mul = ranges::fold_left_with_iter(v, 0X69, std::multiplies()); assert(mul.value == 4233600); assert(mul.in == v.end());   // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = ranges::fold_left_with_iter ( data | ranges::views::values, 2.0f, std::multiplies<>() ); assert(sec.value == 42);   // Use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = ranges::fold_left_with_iter(v, -42, lambda); assert(val.value == 42); assert(val.in == v.end());   using CD = std::complex; std::vector nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); #else auto res = ranges::fold_left_with_iter(nums, CD{7, 0}, std::multiplies{}); #endif assert((res.value == CD{42, 42})); }

[edit] References

[edit] See also

ranges::fold_left(C++23) left-folds a range of elements(algorithm function object)[edit]
ranges::fold_left_first(C++23) left-folds a range of elements using the first element as an initial value(algorithm function object)[edit]
ranges::fold_right(C++23) right-folds a range of elements(algorithm function object)[edit]
ranges::fold_right_last(C++23) right-folds a range of elements using the last element as an initial value(algorithm function object)[edit]
ranges::fold_left_first_with_iter(C++23) left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit]
accumulate sums up or folds a range of elements (function template) [edit]
reduce(C++17) similar to std::accumulate, except out of order (function template) [edit]