std::ranges::fold_right - cppreference.com (original) (raw)

Defined in header
Call signature
(1)
template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-right-foldable */<T, I> F > constexpr auto fold_right( I first, S last, T init, F f ); (since C++23) (until C++26)
template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-right-foldable */<T, I> F > constexpr auto fold_right( I first, S last, T init, F f ); (since C++26)
(2)
template< ranges::bidirectional_range R, class T, /* indirectly-binary-right-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_right( R&& r, T init, F f ); (since C++23) (until C++26)
template< ranges::bidirectional_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-right-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_right( R&& r, T init, F f ); (since C++26)
Helper concepts
template< class F, class T, class I >concept /* indirectly-binary-left-foldable */ = /* see description */; (3) (exposition only*)
template< class F, class T, class I >concept /* indirectly-binary-right-foldable */ = /* see description */; (4) (exposition only*)

Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(x1, f(x2, ...f(xn, init))), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_right behaves like ranges::fold_left(views::reverse(r), init, /*flipped*/(f)).

The behavior is undefined if [first, last) is not a valid range.

  1. The range is [first, last).

  2. Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.

  3. Equivalent to:

Helper concepts
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; (3A) (exposition only*)
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; (3B) (exposition only*)
  1. Equivalent to:
Helper concepts
template< class F, class T, class I > concept /*indirectly-binary-right-foldable*/ = /*indirectly-binary-left-foldable*/</*flipped*/<F>, T, I>; (4A) (exposition only*)
Helper class templates
template< class F > class /*flipped*/ { F f; // exposition only public: template< class T, class U > requires std::invocable<F&, U, T> std::invoke_result_t<F&, U, T> operator()( T&&, U&& ); }; (4B) (exposition only*)

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to fold
r - the range of elements to fold
init - the initial value of the fold
f - the binary function object

[edit] Return value

An object of type U that contains the result of right-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>;.

If the range is empty, U(std::move(init)) is returned.

[edit] Possible implementations

struct fold_right_fn { template<std::bidirectional_iterator I, std::sentinel_for S, class T = std::iter_value_t, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, std::iter_reference_t, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next(first, last); U accum = std::invoke(f, *--tail, std::move(init)); while (first != tail) accum = std::invoke(f, --tail, std::move(accum)); return accum; }   template<ranges::bidirectional_range R, class T = ranges::range_value_t, / indirectly-binary-right-foldable */<T, ranges::iterator_t> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } };   inline constexpr fold_right_fn fold_right;

[edit] Complexity

Exactly ranges::distance(first, last) applications of the function object f.

[edit] Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R>
ranges::fold_left_first_with_iter left first element (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R>
Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms
__cpp_lib_algorithm_default_value_type 202403L (C++26) List-initialization for algorithms (1,2)

[edit] Example

#include #include #include #include #include #include #include #include   using namespace std::literals; namespace ranges = std::ranges;   int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<std::string> vs{"A", "B", "C", "D"};   auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus<>()); // (1) std::cout << "r1: " << r1 << '\n';   auto r2 = ranges::fold_right(vs, "!"s, std::plus<>()); // (2) std::cout << "r2: " << r2 << '\n';   // Use a program defined function object (lambda-expression): std::string r3 = ranges::fold_right ( v, "A", [](int x, std::string s) { return s + ':' + std::to_string(x); } ); std::cout << "r3: " << r3 << '\n';   // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float r4 = ranges::fold_right ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "r4: " << r4 << '\n';   using CD = std::complex; std::vector nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies{}); #else auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies{}); #endif std::cout << "r5: " << r5 << '\n'; }

Output:

r1: 42 r2: ABCD! r3: A:8:7:6:5:4:3:2:1 r4: 42 r5: (42,42)

[edit] References

[edit] See also

ranges::fold_right_last(C++23) right-folds a range of elements using the last element as an initial value(algorithm function object)[edit]
ranges::fold_left(C++23) left-folds a range of elements(algorithm function object)[edit]
ranges::fold_left_first(C++23) left-folds a range of elements using the first element as an initial value(algorithm function object)[edit]
ranges::fold_left_with_iter(C++23) left-folds a range of elements, and returns a pair (iterator, value)(algorithm function object)[edit]
ranges::fold_left_first_with_iter(C++23) left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit]
accumulate sums up or folds a range of elements (function template) [edit]
reduce(C++17) similar to std::accumulate, except out of order (function template) [edit]