Mathematical constants - cppreference.com (original) (raw)

[edit] Constants (since C++20)

Defined in namespace std::numbers
the mathematical constant \(\small e\)e(variable template)
\(\log_{2}e\)log2e(variable template)
\(\log_{10}e\)log10e(variable template)
the mathematical constant \(\pi\)π(variable template)
\(\frac1\pi\)(variable template)
\(\frac1{\sqrt\pi}\)(variable template)
\(\ln{2}\)ln 2(variable template)
\(\ln{10}\)ln 10(variable template)
\(\sqrt2\)√2(variable template)
\(\sqrt3\)√3(variable template)
\(\frac1{\sqrt3}\)(variable template)
the Euler–Mascheroni constant γ(variable template)
the golden ratio Φ (\(\frac{1+\sqrt5}2\))(variable template)
inline constexpr double e e_v<double> (constant)
inline constexpr double log2e log2e_v<double> (constant)
inline constexpr double log10e log10e_v<double> (constant)
inline constexpr double pi pi_v<double> (constant)
inline constexpr double inv_pi inv_pi_v<double> (constant)
inline constexpr double inv_sqrtpi inv_sqrtpi_v<double> (constant)
inline constexpr double ln2 ln2_v<double> (constant)
inline constexpr double ln10 ln10_v<double> (constant)
inline constexpr double sqrt2 sqrt2_v<double> (constant)
inline constexpr double sqrt3 sqrt3_v<double> (constant)
inline constexpr double inv_sqrt3 inv_sqrt3_v<double> (constant)
inline constexpr double egamma egamma_v<double> (constant)
inline constexpr double phi phi_v<double> (constant)

[edit] Notes

A program that instantiates a primary template of a mathematical constant variable template is ill-formed.

The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double, long double , and fixed width floating-point types(since C++23)).

A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.

Feature-test macro Value Std Feature
__cpp_lib_math_constants 201907L (C++20) Mathematical constants

[edit] Example

#include #include #include #include #include #include   auto egamma_aprox(const unsigned iterations) { long double s{}; for (unsigned m{2}; m != iterations; ++m) if (const long double t{std::riemann_zetal(m) / m}; m % 2) s -= t; else s += t; return s; };   int main() { using namespace std::numbers; using namespace std::string_view_literals;   const auto x = std::sqrt(inv_pi) / inv_sqrtpi + std::ceil(std::exp2(log2e)) + sqrt3 * inv_sqrt3 + std::exp(0); const auto v = (phi * phi - phi) + 1 / std::log2(sqrt2) + log10e * ln10 + std::pow(e, ln2) - std::cos(pi);
std::cout << "The answer is " << x * v << '\n';   constexpr auto γ{"0.577215664901532860606512090082402"sv}; std::cout << "γ as 10⁶ sums of ±ζ(m)/m = " << egamma_aprox(1'000'000) << '\n' << "γ as egamma_v = " << std::setprecision(std::numeric_limits::digits10 + 1) << egamma_v << '\n' << "γ as egamma_v = " << std::setprecision(std::numeric_limits::digits10 + 1) << egamma_v << '\n' << "γ as egamma_v = " << std::setprecision(std::numeric_limits::digits10 + 1) << egamma_v << '\n' << "γ with " << γ.length() - 1 << " digits precision = " << γ << '\n'; }

Possible output:

The answer is 42 γ as 10⁶ sums of ±ζ(m)/m = 0.577215 γ as egamma_v = 0.5772157 γ as egamma_v = 0.5772156649015329 γ as egamma_v = 0.5772156649015328606 γ with 34 digits precision = 0.577215664901532860606512090082402

[edit] See also

| | represents exact rational fraction (class template) [edit] | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |