Cdk1, Plks, Auroras, and Neks: The Mitotic Bodyguards (original) (raw)
Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15(4):850–60. PubMedCAS Google Scholar
Durkacz B, Carr A, Nurse P (1986) Transcription of the cdc2 cell cycle control gene of the fission yeast Schizosaccharomyces pombe. EMBO J 5(2):369–373. PubMedCAS Google Scholar
Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54(1):17–26. ArticlePubMedCAS Google Scholar
Draetta G, Luca F, Westendorf J, et al. (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56(5):829–38. ArticlePubMedCAS Google Scholar
Karaiskou A, Perez LH, Ferby I, et al. (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–34. ArticlePubMedCAS Google Scholar
Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 10:776–783. ArticlePubMedCAS Google Scholar
Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–6. ArticlePubMedCAS Google Scholar
Chan CS, Botstein D (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135(3):677–91. PubMedCAS Google Scholar
Glover DM, Leibowitz MH, McLean DA, et al. (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105. ArticlePubMedCAS Google Scholar
Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32. ArticlePubMedCAS Google Scholar
Brown JR, Koretke KK, Birkeland ML, et al. (2004) Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol 4(1):39. ArticlePubMedCAS Google Scholar
O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13(5):221–8. ArticlePubMedCAS Google Scholar
Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104(6):1495–504. ArticlePubMedCAS Google Scholar
Belham C, Roig J, Caldwell JA, et al. (2003) Mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278(37):34897–909. ArticlePubMedCAS Google Scholar
Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194. ArticlePubMedCAS Google Scholar
Prigent C, Glover DM, Giet R (2005) Drosophila Nek2 protein kinase knockdown leads to centrosome maturation defects while overexpression causes centrosome fragmentation and cytokinesis failure. Exp Cell Res 303(1):1–13. PubMedCAS Google Scholar
Scrittori L, Skoufias DA, Hans F, et al. (2005) A small C-terminal sequence of Aurora B is responsible for localization and function. Mol Biol Cell 16(1):292–305. ArticlePubMedCAS Google Scholar
Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1(2):82–7. ArticlePubMedCAS Google Scholar
Blangy A, Lane HA, d'Herin P, et al. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–69. ArticlePubMedCAS Google Scholar
Peter M, Nakagawa J, Doree M, et al. (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61(4):591–602. ArticlePubMedCAS Google Scholar
Kimura K, Hirano M, Kobayashi R, et al. (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282(5388):487–90. ArticlePubMedCAS Google Scholar
Rudner AD, Murray AW (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 149(7):1377–90. ArticlePubMedCAS Google Scholar
Elia AE, Rellos P, Haire LF, et al. (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115(1):83–95. ArticlePubMedCAS Google Scholar
Qian YW, Erikson E, Maller JL (1998) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plx1. Science 282(5394):1701–4. ArticlePubMedCAS Google Scholar
Kumagai, A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380. ArticlePubMedCAS Google Scholar
Nakajima H, Toyoshima-Morimoto F, Taniguchi E, et al. (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278(28):25277–80. ArticlePubMedCAS Google Scholar
Nakajima Toyoshima-Morimoto F, Taniguchi E, Shinya N, et al. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410(6825):215–20. ArticleCAS Google Scholar
Lane, Ham, Nigg, EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol 135:1701–1713. ArticlePubMedCAS Google Scholar
do Carmo Avides M, Tavares A, Glover DM (2001) Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol 3:421–424. ArticlePubMed Google Scholar
Arnaud L, Pines J, Nigg EA (1998) GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107(6–7):424–9. ArticlePubMedCAS Google Scholar
Golan A, Yudkovsky Y, Hershko A (2002) The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J Biol Chem 277(18):15552–7. ArticlePubMedCAS Google Scholar
Kraft C, Herzog F, Gieffers C, et al. (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–609. ArticlePubMedCAS Google Scholar
Hansen DV, Loktev AV, Ban KH, et al. (2004) Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell (12):5623–34. ArticleCAS Google Scholar
Moshe Y, Boulaire J, Pagano M, et al. (2004) Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci USA 101(21):7937–42. ArticlePubMedCAS Google Scholar
Ohkura H, Hagan IM, Glover DM (1995) The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 9(9):1059–73. ArticlePubMedCAS Google Scholar
Bahler J, Steever AB, Wheatley S, et al. (1998) Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J Cell Biol 143(6):1603–16. ArticlePubMedCAS Google Scholar
Carmena M, Riparbelli MG, Minestrini G, et al. (1998) Drosophila polo kinase is required for cytokinesis. J Cell Biol 143(3):659–71. ArticlePubMedCAS Google Scholar
Qian YW, Erikson E, Maller JL (1999) Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol (12):8625–32. Google Scholar
Neef R, Preisinger C, Stucliffe J, et al. (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875. ArticlePubMedCAS Google Scholar
Tsai MY, Wiese C, Cao K, et al. (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5(3):242–8. ArticlePubMedCAS Google Scholar
Dutertre S, Cazales M, Quaranta M, et al. (2004) Phosphorylation of CDC25B by Aurora A at the centrosome contributes to the G2-M transition. J Cell Sci 117(Pt 12):2523–31. ArticlePubMedCAS Google Scholar
Marumoto T, Hirota T, Morisaki T, et al. (2002) Roles of Aurora A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7(11):1173–82. ArticlePubMedCAS Google Scholar
Giet R, Uzbekov R, Cubizolles F, et al. (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274(21):15005–13. ArticlePubMedCAS Google Scholar
Giet R, McLean D, Descamps S, et al. (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–51. ArticlePubMedCAS Google Scholar
Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62. ArticlePubMedCAS Google Scholar
Meraldi P, Honda R, Nigg EA (2002) Aurora A overexpression reveals tetraploidization as a major route to centrosome amplification in p53?/? cells. EMBO J 21(4):483–92. ArticlePubMedCAS Google Scholar
Castro A, Arlot-Bonnemains Y, Vigneron S, et al. (2002a) APC/Fizzy-Related targets Aurora A kinase for proteolysis. EMBO Rep 3(5):457–62. ArticlePubMedCAS Google Scholar
Castro A, Vigneron S, Bernis C, et al. (2002b) The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora A. EMBO Rep 3(12):1209–14. ArticlePubMedCAS Google Scholar
Giet R, Petretti C, Prigent C (2006) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends in Cell Biol 15(5):241–50. ArticleCAS Google Scholar
Adams RR, Wheatley SP, Gouldsworthy AM, et al. (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10(17):1075–8. ArticlePubMedCAS Google Scholar
Hsu JY, Sun ZW, Li X, et al. (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–91. ArticlePubMedCAS Google Scholar
Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–82. ArticlePubMedCAS Google Scholar
Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155(7):1147–57. ArticlePubMedCAS Google Scholar
Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116(Pt 18):3677–85. ArticlePubMedCAS Google Scholar
Ohi R, Sapra T, Howard J, et al. (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15(6):2895–906. ArticlePubMedCAS Google Scholar
Goto H, Yasui Y, Kawajiri A, et al. (2003) Aurora B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–30. ArticlePubMedCAS Google Scholar
Minoshima Y, Kawashima T, Hirose K, et al. (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4(4):549–60. ArticlePubMedCAS Google Scholar
Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–86. ArticlePubMedCAS Google Scholar
Hu HM, Chuang CK, Lee MJ, et al. (2000) Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol 19(11):679–88. ArticlePubMedCAS Google Scholar
Kimura M, Matsuda Y, Yoshioka T, et al. (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–40. ArticlePubMedCAS Google Scholar
Ulisse S, Delcros JG, Baldini E, et al. (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119(2):275–82. ArticlePubMedCAS Google Scholar
Dutertre S, Hamard-Peron E, Cremet JY, et al. (2005) The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora C overexpression. Cell Cycle 4(12):1783–7. PubMedCAS Google Scholar
Sasai K, Katayama H, Stenoien DL, et al. (2004) Aurora C kinase is a novel chromosomal passenger protein that can complement Aurora B kinase function in mitotic cells. Cell Motil Cytoskeleton 59(4):249–63. ArticlePubMedCAS Google Scholar
Osmani AH, McGuire SL, Osmani SA (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67(2):283–91. ArticlePubMedCAS Google Scholar
Fry AM, Mayor T, Meraldi P, et al. (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141(7):1563–74. ArticlePubMedCAS Google Scholar
Fry AM, Arnaud L, Nigg EA (1999) Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J Biol Chem 274:16304–10. ArticlePubMedCAS Google Scholar
Helps NR, Luo X, Barker HM, et al. (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349(Pt 2):509–18. ArticlePubMedCAS Google Scholar
Belham C, Roig J, Caldwell JA, et al. (2003) A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278:34897–909. ArticlePubMedCAS Google Scholar
Yin MJ, Shao L, Voehringer D, et al. (2003). The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis. J Biol Chem 278:52454–60. ArticlePubMedCAS Google Scholar
Roig J, Groen A, Caldwell J, et al. (2005). Active Nercc1 protein kinase concentrates at centrosomes early in mitosis, and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–40. ArticlePubMedCAS Google Scholar
Lingle WL, Barrett SL, Negron VC, et al. (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99(4):1978–83. ArticlePubMedCAS Google Scholar
Hahn WC, Counter CM, Lundberg AS, et al. (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–8. ArticlePubMedCAS Google Scholar
Yamamoto H, Monden T, Miyoshi H, et al. (1998) Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. Int J Oncol 13(2):233–9. PubMedCAS Google Scholar
Kim JH, Kang MJ, Park CU, et al. (1999) Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. Cancer 85(3):546–53. ArticlePubMedCAS Google Scholar
McDonald ER 3rd, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development. Int J Oncol 16(5):871–86. PubMedCAS Google Scholar
Dobashi Y, Shoji M, Jiang SX, et al. (1998) Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol 153(3):963–72. PubMedCAS Google Scholar
Matushansky I, Radparvar F, Skoultchi AI (2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc Natl Acad Sci USA 97:14317–22. ArticlePubMedCAS Google Scholar
Damiens E, Baratte B, Marie D, et al. (2001) Anti-mitotic properties of indirubin-3-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20:3786–97. ArticlePubMedCAS Google Scholar
Edamatsu H, Gau CL, Nemoto T, et al. (2000) Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyl transferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene 19:3059–68. ArticlePubMedCAS Google Scholar
Sen S, Zhou H, Zhang RD, et al. (2002). Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–9. PubMedCAS Google Scholar
Bischoff JR, Anderson L, Zhu Y, et al. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J 17:3052–65. ArticlePubMedCAS Google Scholar
Zhou H, Kuang J, Zhong L, et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–93. ArticlePubMedCAS Google Scholar
Tanaka T, Kimura M, Matsunaga K, et al. (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–4. PubMedCAS Google Scholar
Han H, Bearss DJ, Browne LW, et al. (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–6. PubMedCAS Google Scholar
Miyoshi Y, Iwao K, Egawa C, et al. (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–3. ArticlePubMedCAS Google Scholar
Ewart-Toland A, Briassouli P, de Koning JP, et al. (2003) Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34(4):403–12. ArticlePubMedCAS Google Scholar
Wang X, Zhou YX, Qiao W, et al. (2006) Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25:7148–58. ArticlePubMedCAS Google Scholar
Katayama H, Sasai K, Kawai H, et al. (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62. ArticlePubMedCAS Google Scholar
Liu Q, KaNeko S, Yang I, et al. (2004) Aurora A abrogation of p53 dna binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–82. ArticlePubMedCAS Google Scholar
Gigoux V, L'Hoste S, Raynaud F, et al. (2002) Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J Biol Chem 277:23742–6. ArticlePubMedCAS Google Scholar
Katayama H, Ota T, Jisaki F, et al. (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91:1160–2. ArticlePubMedCAS Google Scholar
Takahashi T, Futamura M, Yoshimi N, et al. (2000) Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 91:1007–14. PubMedCAS Google Scholar
Adams RR, Eckley DM, Vagnarelli P, et al. (2001) Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 110:65–74. ArticlePubMedCAS Google Scholar
Chieffi P, Cozzolino L, Kisslinger A, et al. (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–33. ArticlePubMedCAS Google Scholar
Ota T, Suto S, Katayama H, et al. (2002) Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 62:5168–77. PubMedCAS Google Scholar
Smith SL, Bowers NL, Betticher DC, et al. (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93(6):719–29. ArticlePubMedCAS Google Scholar
Harrington EA, Bebbington D, Moore J, et al. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–7. ArticlePubMedCAS Google Scholar
Smith MR, Wilson ML, Hamanaka R, et al. (1997) Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234:397–405. ArticlePubMedCAS Google Scholar
Eckerdt F, Yuan J, Strebhardt K (2005) Polo-like kinases and oncogenesis. Oncogene 24(2):267–76. ArticlePubMedCAS Google Scholar
Weichert W, Denkert C, Schmidt M, et al. (2004). Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 90:815–21. ArticlePubMedCAS Google Scholar
Tokumitsu Y, Mori M, Tanaka S, et al. (1999) Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol 15:687–92. PubMedCAS Google Scholar
Knecht R, Oberhauser C, Strebhardt K (2000) PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89:535–6. ArticlePubMedCAS Google Scholar
Kneisel L, Strebhardt K, Bernd A, et al. (2002) Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29(6):354–8. ArticlePubMed Google Scholar
Yamada S, Ohira M, Horie H, et al. (2004) Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 23(35):5901–11. ArticlePubMedCAS Google Scholar
Simizu, S, Osada H (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol 2:852–4. ArticlePubMedCAS Google Scholar
Mundt KE, Golsteyn RM, Lane HA, et al. (1997) On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun 239(2):377–85. ArticlePubMedCAS Google Scholar
Yamamoto Y, Matsuyama H, Kawauchi S, et al. (2006) Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 70(3):231–7. ArticlePubMed Google Scholar
Spankuch-Schmitt B, Wolf G, Solbach C, et al. (2002) Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene 21(20):3162–71. ArticlePubMedCAS Google Scholar
Spankuch B, Matthess Y, Knecht R, et al. (2004) Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96(11):862–72. ArticlePubMedCAS Google Scholar
Weiss MM, Kuipers EJ, Postma C, et al. (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26(5–6):307–17. PubMedCAS Google Scholar
Schultz SJ, Fry AM, Sutterlin C, et al. (1994) Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ 5(6):625–35. PubMedCAS Google Scholar
Loo LW, Grove DI, Williams EM, et al. (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64(23):8541–9. ArticlePubMedCAS Google Scholar
Bettencourt-Dias M, Giet R, Sinka R, et al. 2004 Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:23–30. ArticleCAS Google Scholar