Model Systems for Examining Effects of Leukemia Associated Oncogenes in Primary Human CD34+ Cells via Retroviral Transduction (original) (raw)
Sharpless NE, Depinho RA. (2006). The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov;5(9):741–54. ArticlePubMedCAS Google Scholar
Rangarajan A, Weinberg RA. (2003). Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nat Rev Cancer;3(12):952–9. ArticlePubMedCAS Google Scholar
Rangarajan A, Hong SJ, Gifford A, Weinberg RA. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell;6(2):171–83. ArticlePubMedCAS Google Scholar
Drayton S, Peters G. (2002). Immortalisation and transformation revisited. Curr Opin Genet Dev;12(1):98–104. ArticlePubMedCAS Google Scholar
Smogorzewska A, de Lange T. (2002). Different telomere damage signaling pathways in human and mouse cells. Embo J ;21(16):4338–48. ArticlePubMedCAS Google Scholar
Hamad NM, Elconin JH, Karnoub AE, et al. (2002). Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev;16(16):2045–57. ArticlePubMedCAS Google Scholar
Lim KH, Baines AT, Fiordalisi JJ, et al. (2005). Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell;7(6):533–45. ArticlePubMedCAS Google Scholar
Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. (1999). Creation of human tumour cells with defined genetic elements. Nature;400(6743):464–8. ArticlePubMedCAS Google Scholar
Hahn WC, Weinberg RA. (2002). Rules for making human tumor cells. N Engl J Med;347(20):1593–603. ArticlePubMedCAS Google Scholar
Pereira DS, Dorrell C, Ito CY, et al. (1998). Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci U S A;95(14):8239–44. ArticlePubMedCAS Google Scholar
Grignani F, Valtieri M, Gabbianelli M, et al. (2000). PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood;96(4):1531–7. PubMedCAS Google Scholar
Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood;99(1):15–23. ArticlePubMedCAS Google Scholar
Buske C, Feuring-Buske M, Antonchuk J, et al. (2001). Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood;97(8):2286–92. ArticlePubMedCAS Google Scholar
Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. (2000). The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol;28(5):569–74. ArticlePubMedCAS Google Scholar
Barabe F, Kennedy JA, Hope KJ, Dick JE. (2007). Modeling the initiation and progression of human acute leukemia in mice. Science;316(5824):600–4. ArticlePubMedCAS Google Scholar
Bowie MB, Kent DG, Dykstra B, et al. (2007). Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A;104(14):5878–82. ArticlePubMedCAS Google Scholar
Holyoake TL, Nicolini FE, Eaves CJ. (1999). Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol;27(9):1418–27. ArticlePubMedCAS Google Scholar
Kelly PF, Carrington J, Nathwani A, Vanin EF. (2001). RD114-pseudotyped oncoretroviral vectors. Biological and physical properties. Ann N Y Acad Sci;938:262–76; discussion 76–7. ArticlePubMedCAS Google Scholar
Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF. (2000). Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood;96(4):1206–14. PubMedCAS Google Scholar
Hanawa H, Kelly PF, Nathwani AC, et al. (2002). Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther;5(3):242–51. ArticlePubMedCAS Google Scholar
Wunderlich M, Krejci O, Wei J, Mulloy JC. (2006). Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood;108(5):1690–7. ArticlePubMedCAS Google Scholar
Mulloy JC, Cammenga J, Berguido FJ, et al. (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood;102(13):4369–76. ArticlePubMedCAS Google Scholar
Itoh K, Tezuka H, Sakoda H, et al. (1989). Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol;17(2):145–53. PubMedCAS Google Scholar
Ito M, Hiramatsu H, Kobayashi K, et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood;100(9):3175–82. ArticlePubMedCAS Google Scholar
Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. (2004). NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia;18(2):341–7. ArticlePubMedCAS Google Scholar
Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE. (2003). Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia;17(4):760–3. ArticlePubMedCAS Google Scholar
Haas DL, Case SS, Crooks GM, Kohn DB. (2000). Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther;2(1):71–80. ArticlePubMedCAS Google Scholar
Sandrin V, Boson B, Salmon P, et al. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood;100(3):823–32. ArticlePubMedCAS Google Scholar
Wang J, Kimura T, Asada R, et al. (2003). SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood;101(8): 2924–31. ArticlePubMedCAS Google Scholar
Yahata T, Ando K, Sato T, et al. (2003). A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood;101(8):2905–13. ArticlePubMedCAS Google Scholar
Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JE, Zheng Y, Cancelas JA, Gu Y, Jansen M, DiMartino JF and Mulloy, JC (2008) Microenvironment Determines Lineage Fate in a Human Model of MLL-AF9 Leukemia. Cancer Cell;13(6): 483–495. Google Scholar
Mulloy JC, Wunderlich M, Zheng Y, Wei J. (2008) Transforming Human Blood Stem and Progenitor Cells: A New Way Forward in Leukemia Modeling. Cell Cycle;7(21): 57–52. Google Scholar