Cao Y et al (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3(114):114rv3 PubMedPubMed Central Google Scholar
Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342 CASPubMed Google Scholar
Kuczynski EA et al (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493 CASPubMed Google Scholar
Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364 CASPubMed Google Scholar
Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122 CASPubMed Google Scholar
Nowak-Sliwinska P et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532 PubMedPubMed Central Google Scholar
Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37(Pt 6):1233–1236 CASPubMed Google Scholar
Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660 CASPubMed Google Scholar
Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR11 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110 CASPubMed Google Scholar
Shawber CJ et al (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382 CASPubMedPubMed Central Google Scholar
Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953 CASPubMed Google Scholar
Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780 PubMed Google Scholar
Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224 CASPubMedPubMed Central Google Scholar
Harrington LS et al (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75(2):144–154 CASPubMed Google Scholar
Funahashi Y et al (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3 PubMedPubMed Central Google Scholar
Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177 CASPubMedPubMed Central Google Scholar
Fantin A et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121(12):2352–2362 CASPubMedPubMed Central Google Scholar
Segarra M et al (2012) Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood 120(19):4104–4115 CASPubMedPubMed Central Google Scholar
Phng LK et al (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82 CASPubMedPubMed Central Google Scholar
Herwig L et al (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21(22):1942–1948 CASPubMed Google Scholar
Kochhan E et al (2013) Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS One 8(10):e75060 CASPubMedPubMed Central Google Scholar
Lenard A et al (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25(5):492–506 CASPubMed Google Scholar
Phng LK, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040 CASPubMed Google Scholar
Blum Y et al (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316(2):312–322 CASPubMed Google Scholar
Betz C et al (2016) Cell behaviors and dynamics during angiogenesis. Development 143(13):2249–2260 CASPubMed Google Scholar
Patan S et al (1992) Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch Histol Cytol 55(Suppl):65–75 PubMed Google Scholar
Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228(1):35–45 CASPubMed Google Scholar
Hellstrom M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055 CASPubMed Google Scholar
Wilting J et al (1996) VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol 176(1):76–85 CASPubMed Google Scholar
Crivellato E et al (2004) Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo. Leukemia 18(2):331–336 CASPubMed Google Scholar
Ribatti D et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14(1):81–84 PubMed Google Scholar
Nico B et al (2010) Intussusceptive microvascular growth in human glioma. Clin Exp Med 10(2):93–98 CASPubMed Google Scholar
Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51(2):260–272 CASPubMed Google Scholar
Djonov V et al (2001) MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours. J Pathol 195(2):147–155 CASPubMed Google Scholar
Risau W et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478 CASPubMed Google Scholar
Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125(2):441–450 CASPubMed Google Scholar
Choi K (1998) Hemangioblast development and regulation. Biochem Cell Biol 76(6):947–956 CASPubMed Google Scholar
Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967 CASPubMed Google Scholar
Bussolati B, Grange C, Camussi G (2011) Tumor exploits alternative strategies to achieve vascularization. FASEB J 25(9):2874–2882 CASPubMed Google Scholar
Kioi M et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705 CASPubMedPubMed Central Google Scholar
Ahn JB et al (2010) Circulating endothelial progenitor cells (EPC) for tumor vasculogenesis in gastric cancer patients. Cancer Lett 288(1):124–132 CASPubMed Google Scholar
Greenfield JP, Cobb WS, Lyden D (2010) Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest 120(3):663–667 CASPubMedPubMed Central Google Scholar
Chopra H et al (2018) Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int 2018:9847015 CASPubMedPubMed Central Google Scholar
Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136 CASPubMed Google Scholar
Romagnani P et al (2005) CD14 + CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97(4):314–322 CASPubMed Google Scholar
Shin JW et al (2005) Isolation of endothelial progenitor cells from cord blood and induction of differentiation by ex vivo expansion. Yonsei Med J 46(2):260–267 PubMedPubMed Central Google Scholar
Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353 CASPubMed Google Scholar
Reale A et al (2016) Functional and biological role of endothelial precursor cells in tumour progression: a new potential therapeutic target in haematological malignancies. Stem Cells Int 2016:7954580 PubMed Google Scholar
Asahara T et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14):3964–3972 CASPubMedPubMed Central Google Scholar
Hattori K et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014 CASPubMedPubMed Central Google Scholar
Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13(3):175–181 CASPubMedPubMed Central Google Scholar
Chang EI et al (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphat Res Biol 5(4):237–243 CASPubMed Google Scholar
Spring H et al (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 102(50):18111–18116 CASPubMedPubMed Central Google Scholar
Nakamura N et al (2009) Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Rac1. FEBS Lett 583(15):2457–2463 CASPubMed Google Scholar
Maniotis AJ et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752 CASPubMedPubMed Central Google Scholar
Ricci-Vitiani L et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828 CASPubMed Google Scholar
Baeten CI et al (2009) Prognostic role of vasculogenic mimicry in colorectal cancer. Dis Colon Rectum 52(12):2028–2035 PubMed Google Scholar
Sharma N et al (2002) Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 50(3):189–201 PubMed Google Scholar
Seftor RE et al (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125 CASPubMedPubMed Central Google Scholar
Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112(7–8):508–525 PubMed Google Scholar
Angara K, Borin TF, Arbab AS (2017) Vascular mimicry: a novel neovascularization mechanism driving anti-angiogenic therapy (AAT) resistance in glioblastoma. Transl Oncol 10(4):650–660 PubMedPubMed Central Google Scholar
Valyi-Nagy K et al (2012) Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis 18:588–592 CASPubMedPubMed Central Google Scholar
Lin AY et al (2005) Distinguishing fibrovascular septa from vasculogenic mimicry patterns. Arch Pathol Lab Med 129(7):884–892 PubMed Google Scholar
Comito G et al (2011) HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 51(4):893–904 CASPubMed Google Scholar
Angara K et al (2017) Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 32(9):917–928 CASPubMed Google Scholar
Li M et al (2010) Vasculogenic mimicry: a new prognostic sign of gastric adenocarcinoma. Pathol Oncol Res 16(2):259–266 PubMed Google Scholar
Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833 CASPubMed Google Scholar
Mei X et al (2017) Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol 19(8):1109–1118 CASPubMedPubMed Central Google Scholar
Bussolati B et al (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13(2):309–319 CASPubMed Google Scholar
Alvero AB et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27(10):2405–2413 CASPubMedPubMed Central Google Scholar
Zhao Y et al (2010) Endothelial cell transdifferentiation of human glioma stem progenitor cells in vitro. Brain Res Bull 82(5–6):308–312 CASPubMed Google Scholar
Kulla A et al (2003) Analysis of the TP53 gene in laser-microdissected glioblastoma vasculature. Acta Neuropathol 105(4):328–332 CASPubMed Google Scholar
Rodriguez FJ et al (2012) Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 3(1):98–106 PubMedPubMed Central Google Scholar
De Palma M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226 PubMed Google Scholar
Cheng L et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152 CASPubMedPubMed Central Google Scholar
Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111 CASPubMed Google Scholar
McDonald DM, Baluk P (2005) Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B. Francis lecture. Chest 128(6 Suppl):602S–608S PubMed Google Scholar
Kimura H et al (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56(23):5522–5528 CASPubMed Google Scholar
Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 64(17):6183–6189 CASPubMed Google Scholar
Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380 CASPubMedPubMed Central Google Scholar
Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695 CASPubMed Google Scholar
Abramsson A et al (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105(1):112–117 CASPubMed Google Scholar
Morikawa S et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000 PubMedPubMed Central Google Scholar
Baluk P et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815 PubMedPubMed Central Google Scholar
St Croix B et al (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202 CASPubMed Google Scholar
Zhang L et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63(12):3403–3412 CASPubMed Google Scholar
Carson-Walter EB et al (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61(18):6649–6655 CASPubMed Google Scholar
Huang X et al (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 207(3):505–520 CASPubMedPubMed Central Google Scholar
Dieterich LC et al (2012) Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFbeta2 in vascular abnormalization. J Pathol 228(3):378–390 CASPubMed Google Scholar
Roudnicky F et al (2013) Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res 73(3):1097–1106 CASPubMed Google Scholar
Zhao Q et al (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res 78(9):2370–2382 CASPubMed Google Scholar
Buckanovich RJ et al (2007) Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol 25(7):852–861 CASPubMed Google Scholar
Zhang L et al (2018) IDH mutation status is associated with distinct vascular gene expression signatures in lower-grade gliomas. Neuro Oncol 20(11):1505–1516 CASPubMedPubMed Central Google Scholar
Masiero M et al (2013) A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24(2):229–241 CASPubMedPubMed Central Google Scholar
Hanly AM, Winter DC (2007) The role of thrombomodulin in malignancy. Semin Thromb Hemost 33(7):673–679 CASPubMed Google Scholar
Maruno M et al (1994) Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol 19(2):155–160 CASPubMed Google Scholar
Mura M et al (2012) Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene 31(3):293–305 CASPubMed Google Scholar
Langenkamp E et al (2015) Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival. Cancer Res 75(21):4504–4516 CASPubMed Google Scholar
Lugano R et al (2018) CD93 promotes beta1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest 128(8):3280–3297 PubMedPubMed Central Google Scholar
Christian S et al (2008) Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 172(2):486–494 CASPubMedPubMed Central Google Scholar
Khan KA et al (2017) Multimerin-2 is a ligand for group 14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface. Oncogene 36(44):6097–6108 CASPubMedPubMed Central Google Scholar
Galvagni F et al (2017) Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol 64:112–127 CASPubMed Google Scholar
Mogler C et al (2015) Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol Med 7(3):332–338 CASPubMedPubMed Central Google Scholar
Viski C et al (2016) Endosialin-expressing pericytes promote metastatic dissemination. Cancer Res 76(18):5313–5325 CASPubMed Google Scholar
Griffioen AW et al (1996) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88(2):667–673 CASPubMed Google Scholar
Griffioen AW et al (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56(5):1111–1117 CASPubMed Google Scholar
Dirkx AE et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63(9):2322–2329 CASPubMed Google Scholar
Huang H et al (2015) VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. FASEB J 29(1):227–238 CASPubMed Google Scholar
Motz GT et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20(6):607–615 CASPubMedPubMed Central Google Scholar
Buckanovich RJ et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14(1):28–36 CASPubMed Google Scholar
Phoenix TN et al (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29(4):508–522 CASPubMedPubMed Central Google Scholar
Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676 CASPubMed Google Scholar
Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264 CASPubMedPubMed Central Google Scholar
Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611 CASPubMed Google Scholar
Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273(2):114–127 CASPubMed Google Scholar
Takahashi T et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778 CASPubMedPubMed Central Google Scholar
Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794 CASPubMed Google Scholar
van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212 PubMed Google Scholar
Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437(7058):497–504 CASPubMed Google Scholar
Weis S et al (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167(2):223–229 CASPubMedPubMed Central Google Scholar
Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97(3):355–363 CASPubMedPubMed Central Google Scholar
Autiero M et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943 CASPubMed Google Scholar
Schomber T et al (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848 CASPubMed Google Scholar
Fischer C et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475 CASPubMed Google Scholar
Bais C et al (2010) PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141(1):166–177 CASPubMed Google Scholar
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129 CASPubMed Google Scholar
Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266 CASPubMedPubMed Central Google Scholar
Presta M et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178 CASPubMed Google Scholar
Compagni A et al (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169 CASPubMed Google Scholar
Incio J et al (2018) Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10(432):eaag0945 PubMedPubMed Central Google Scholar
Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316 CASPubMed Google Scholar
Franco M et al (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917 CASPubMedPubMed Central Google Scholar
Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228 CASPubMed Google Scholar
Guo P et al (2003) Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093 CASPubMedPubMed Central Google Scholar
Davis S et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7):1161–1169 CASPubMed Google Scholar
Maisonpierre PC et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60 CASPubMed Google Scholar
Kiss EA, Saharinen P (2018) Anti-angiogenic targets: angiopoietin and angiopoietin-receptors. In: Marmé D (ed) Tumor angiogenesis: a key target for cancer therapy. Springer, Cham, pp 1–24 Google Scholar
Reiss Y et al (2009) Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol 217(4):571–580 CASPubMed Google Scholar
Shim WS, Ho IA, Wong PE (2007) Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res 5(7):655–665 CASPubMed Google Scholar
Fiedler U et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12(2):235–239 CASPubMed Google Scholar
Chae SS et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16(14):3618–3627 CASPubMedPubMed Central Google Scholar
Peterson TE et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113(16):4470–4475 CASPubMedPubMed Central Google Scholar
Kloepper J et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113(16):4476–4481 CASPubMedPubMed Central Google Scholar
Wu FT et al (2016) Efficacy of cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res 76(23):6988–7000 CASPubMedPubMed Central Google Scholar
Lisle JE et al (2013) Eph receptors and their ligands: promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta 1835(2):243–257 CASPubMed Google Scholar
Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3(7):475–486 CASPubMed Google Scholar
Holder N, Klein R (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126(10):2033–2044 CASPubMed Google Scholar
Adams RH, Klein R (2000) Eph receptors and ephrin ligands. Essential mediators of vascular development. Trends Cardiovasc Med 10(5):183–188 CASPubMed Google Scholar
Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15(6):419–433 CASPubMed Google Scholar
Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19(49):5614–5619 CASPubMed Google Scholar
Dong Y et al (2009) Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Mod Pathol 22(1):151–160 CASPubMed Google Scholar
Hafner C et al (2003) Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23(6):1553–1559 CASPubMed Google Scholar
Ogawa K et al (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19(52):6043–6052 CASPubMed Google Scholar
Dobrzanski P et al (2004) Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 64(3):910–919 CASPubMed Google Scholar
Brantley DM et al (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21(46):7011–7026 CASPubMed Google Scholar
Cheng N et al (2003) Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia 5(5):445–456 CASPubMedPubMed Central Google Scholar
Noren NK et al (2004) Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA 101(15):5583–5588 CASPubMedPubMed Central Google Scholar
Uhl C et al (2018) EphB4 mediates resistance to antiangiogenic therapy in experimental glioma. Angiogenesis 21(4):873–881 CASPubMedPubMed Central Google Scholar
Krusche B et al (2016) EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. Elife 5:e14845 PubMedPubMed Central Google Scholar
Wang Y et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486 CASPubMed Google Scholar
Sawamiphak S et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491 CASPubMed Google Scholar
Tatemoto K et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476 CASPubMed Google Scholar
Devic E et al (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140 CASPubMed Google Scholar
Cox CM et al (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296(1):177–189 CASPubMed Google Scholar
Kalin RE et al (2007) Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305(2):599–614 PubMed Google Scholar
Wysocka MB, Pietraszek-Gremplewicz K, Nowak D (2018) The role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol 9:557 PubMedPubMed Central Google Scholar
Berta J et al (2010) Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol 5(8):1120–1129 PubMed Google Scholar
Seaman S et al (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11(6):539–554 CASPubMedPubMed Central Google Scholar
Feng M et al (2016) Tumor apelin, not serum apelin, is associated with the clinical features and prognosis of gastric cancer. BMC Cancer 16(1):794 PubMedPubMed Central Google Scholar
Lacquaniti A et al (2015) Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med 15(1):97–105 CASPubMed Google Scholar
Heo K et al (2012) Hypoxia-induced up-regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral Oncol 48(6):500–506 CASPubMed Google Scholar
Hall C et al (2017) Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Lett 386:179–188 CASPubMed Google Scholar
Macaluso NJ et al (2011) Discovery of a competitive apelin receptor (APJ) antagonist. Chem Med Chem 6(6):1017–1023 CASPubMed Google Scholar
Lv D et al (2016) PAK1-cofilin phosphorylation mediates human lung adenocarcinoma cells migration induced by apelin-13. Clin Exp Pharmacol Physiol 43(5):569–579 CASPubMed Google Scholar
Berta J et al (2014) Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 5(12):4426–4437 PubMedPubMed Central Google Scholar
Sorli SC et al (2007) Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26(55):7692–7699 CASPubMed Google Scholar
Sorli SC et al (2006) Therapeutic potential of interfering with apelin signalling. Drug Discov Today 11(23–24):1100–1106 CASPubMed Google Scholar
Uribesalgo I et al (2019) Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med 11(8):e9266 PubMedPubMed Central Google Scholar
Mastrella G et al (2019) Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res 79(9):2298–2313 CASPubMed Google Scholar
Harford-Wright E et al (2017) Pharmacological targeting of apelin impairs glioblastoma growth. Brain 140(11):2939–2954 PubMedPubMed Central Google Scholar
Le Y et al (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1(2):95–104 CASPubMed Google Scholar
Heidemann J et al (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR192. J Biol Chem 278(10):8508–8515 CASPubMed Google Scholar
Keane MP et al (2004) Depletion of CXCR193 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172(5):2853–2860 CASPubMed Google Scholar
Kitadai Y et al (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res 6(7):2735–2740 CASPubMed Google Scholar
Ijichi H et al (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121(10):4106–4117 CASPubMedPubMed Central Google Scholar
Yang G et al (2010) CXCR196 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 16(15):3875–3886 CASPubMedPubMed Central Google Scholar
Smith ML, Olson TS, Ley K (2004) CXCR197- and E-selectin-induced neutrophil arrest during inflammation in vivo. J Exp Med 200(7):935–939 CASPubMedPubMed Central Google Scholar
Smith DR et al (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179(5):1409–1415 CASPubMed Google Scholar
Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR199/2 axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588 CASPubMedPubMed Central Google Scholar
Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284(10):6038–6042 CASPubMedPubMed Central Google Scholar
Scapini P et al (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040 CASPubMed Google Scholar
Zhao X et al (2009) ELR-CXC chemokine receptor antagonism targets inflammatory responses at multiple levels. J Immunol 182(5):3213–3222 CASPubMed Google Scholar
Li A et al (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8(1):63–71 CASPubMed Google Scholar
Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407 CASPubMed Google Scholar
Sozzani S et al (2015) Chemokines as effector and target molecules in vascular biology. Cardiovasc Res 107(3):364–372 CASPubMed Google Scholar
Xu J et al (2017) Vascular CXCR206 expression promotes vessel sprouting and sensitivity to sorafenib treatment in hepatocellular carcinoma. Clin Cancer Res 23(15):4482–4492 CASPubMed Google Scholar
Ceradini DJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864 CASPubMed Google Scholar
Wolf MJ et al (2012) Endothelial CCR208 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22(1):91–105 CASPubMed Google Scholar
Chen X et al (2016) CCL2/CCR209 regulates the tumor microenvironment in HER-2/neu-driven mammary carcinomas in mice. PLoS One 11(11):e0165595 PubMedPubMed Central Google Scholar
Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176 PubMedPubMed Central Google Scholar
Gupta MK, Qin RY (2003) Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 9(6):1144–1155 CASPubMedPubMed Central Google Scholar
Sainson RC et al (2008) TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007 CASPubMedPubMed Central Google Scholar
Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132(3):359–371 CASPubMed Google Scholar
Lu KV et al (2005) Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280(29):26953–26964 CASPubMed Google Scholar
Chen H et al (2009) Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 113(9):1992–2002 CASPubMedPubMed Central Google Scholar
Zhang L et al (2015) Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Sci Signal 8(406):ra125 PubMed Google Scholar
Cai Y et al (2005) Identification of a new RTN3 transcript, RTN3-A1, and its distribution in adult mouse brain. Brain Res Mol Brain Res 138(2):236–243 CASPubMed Google Scholar
Yang J et al (2000) Assignment of the human reticulon 4 gene (RTN4) to chromosome 2p14– > 2p13 by radiation hybrid mapping. Cytogenet Cell Genet 88(1–2):101–102 CASPubMed Google Scholar
Acevedo L et al (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10(4):382–388 CASPubMed Google Scholar
Yu J et al (2009) Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proc Natl Acad Sci USA 106(41):17511–17516 CASPubMedPubMed Central Google Scholar
Zhu B et al (2017) Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia 19(7):583–593 CASPubMedPubMed Central Google Scholar
Cai H et al (2018) Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Mol Oncol 12(12):2042–2054 CASPubMedPubMed Central Google Scholar
Lv X et al (2017) The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis 4(1):19–24 CASPubMed Google Scholar
Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26(2):281–290 CASPubMed Google Scholar
Miller F et al (2005) Inactivation of VHL by tumorigenic mutations that disrupt dynamic coupling of the pVHL. Hypoxia-inducible transcription factor-1alpha complex. J Biol Chem 280(9):7985–7996 CASPubMed Google Scholar
Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322 CASPubMed Google Scholar
de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 13:118–137 PubMed Google Scholar
Benelli R et al (2006) Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 12(24):3101–3115 CASPubMed Google Scholar
Albini A et al (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 9:527 PubMedPubMed Central Google Scholar
Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217 CASPubMed Google Scholar
Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237 CASPubMed Google Scholar
Biswas SK et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122 CASPubMed Google Scholar
Lin EY et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246 CASPubMed Google Scholar
Zhang W et al (2010) Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 16(13):3420–3430 CASPubMed Google Scholar
Spiric Z, Eri Z, Eric M (2015) Significance of vascular endothelial growth factor (VEGF)-C and VEGF-D in the progression of cutaneous melanoma. Int J Surg Pathol 23(8):629–637 CASPubMed Google Scholar
Zhou H et al (2012) Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 15(3):391–407 CASPubMedPubMed Central Google Scholar
Cejudo-Martin P et al (2002) Hypoxia is an inducer of vasodilator agents in peritoneal macrophages of cirrhotic patients. Hepatology 36(5):1172–1179 CASPubMed Google Scholar
Klimp AH et al (2001) Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 61(19):7305–7309 CASPubMed Google Scholar
Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114(5):623–633 CASPubMedPubMed Central Google Scholar
Gocheva V et al (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255 CASPubMedPubMed Central Google Scholar
Zhang J et al (2011) Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia 13(1):23–30 PubMedPubMed Central Google Scholar
Shen Z et al (2012) Vasohibin-1 and vasohibin-2 expression in gastric cancer cells and TAMs. Med Oncol 29(4):2718–2726 CASPubMed Google Scholar
Welford AF et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973 CASPubMedPubMed Central Google Scholar
Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150 CASPubMedPubMed Central Google Scholar
Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139 CASPubMedPubMed Central Google Scholar
Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446 CASPubMed Google Scholar
Kumar V et al (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220 CASPubMedPubMed Central Google Scholar
Jacob A, Prekeris R (2015) The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3:4 PubMedPubMed Central Google Scholar
Horikawa N et al (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23(2):587–599 CASPubMed Google Scholar
Karakhanova S et al (2015) Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology 4(4):e998519 PubMedPubMed Central Google Scholar
Chun E et al (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257 CASPubMedPubMed Central Google Scholar
Obermajer N et al (2011) PGE(2)-induced CXCL12 production and CXCR252 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71(24):7463–7470 CASPubMedPubMed Central Google Scholar
Shojaei F et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831 CASPubMed Google Scholar
Piao Y et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14(11):1379–1392 CASPubMedPubMed Central Google Scholar
van Hooren L et al (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7(31):50277–50289 PubMedPubMed Central Google Scholar
Tecchio C et al (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23(3):159–170 CASPubMed Google Scholar
Mueller MD et al (2000) Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil Steril 74(1):107–112 CASPubMed Google Scholar
Heryanto B, Girling JE, Rogers PA (2004) Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127(5):613–620 CASPubMed Google Scholar
Shaw JP et al (2003) Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res 109(1):37–42 CASPubMed Google Scholar
Benelli R et al (2002) Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2):267–269 CASPubMed Google Scholar
Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103(33):12493–12498 CASPubMedPubMed Central Google Scholar
Shaul ME, Fridlender ZG (2017) Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol 102(2):343–349 CASPubMed Google Scholar
Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194 CASPubMedPubMed Central Google Scholar
Grenier A et al (2002) Presence of a mobilizable intracellular pool of hepatocyte growth factor in human polymorphonuclear neutrophils. Blood 99(8):2997–3004 CASPubMed Google Scholar
Dubravec DB et al (1990) Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor alpha. Proc Natl Acad Sci USA 87(17):6758–6761 CASPubMedPubMed Central Google Scholar
Kujawski M et al (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377 CASPubMedPubMed Central Google Scholar
Ardi VC et al (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 104(51):20262–20267 CASPubMedPubMed Central Google Scholar
Hanna J et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074 CASPubMed Google Scholar
Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 88(2):86–92 CASPubMed Google Scholar
Keskin DB et al (2007) TGFbeta promotes conversion of CD16 + peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 104(9):3378–3383 CASPubMedPubMed Central Google Scholar
Bruno A et al (2013) The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 15(2):133–142 CASPubMedPubMed Central Google Scholar
Gao Y et al (2017) Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol 18(9):1004–1015 CASPubMed Google Scholar
Andreu P et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17(2):121–134 CASPubMedPubMed Central Google Scholar
Blotnick S et al (1994) T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4 + and CD8 + T cells. Proc Natl Acad Sci USA 91(8):2890–2894 CASPubMedPubMed Central Google Scholar
Fathallah-Shaykh HM et al (2000) Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164(1):217–222 CASPubMed Google Scholar
Friesel R, Komoriya A, Maciag T (1987) Inhibition of endothelial cell proliferation by gamma-interferon. J Cell Biol 104(3):689–696 CASPubMed Google Scholar
Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106(4):1375–1384 CASPubMed Google Scholar
Belardelli F et al (1983) Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. III. Inhibition of growth and necrosis of tumors implanted subcutaneously. Int J Cancer 31(5):649–653 CASPubMed Google Scholar
Sato N et al (1990) Actions of TNF and IFN-gamma on angiogenesis in vitro. J Invest Dermatol 95(6 Suppl):85S–89S CASPubMed Google Scholar
Maheshwari RK et al (1991) Differential effects of interferon gamma and alpha on in vitro model of angiogenesis. J Cell Physiol 146(1):164–169 CASPubMed Google Scholar
Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306 CASPubMed Google Scholar
Strieter RM et al (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16(6):593–609 CASPubMed Google Scholar
Burdick MD et al (2005) CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 171(3):261–268 PubMed Google Scholar
Lasagni L et al (2003) An alternatively spliced variant of CXCR286 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549 CASPubMedPubMed Central Google Scholar
Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17(3):471–494 CASPubMedPubMed Central Google Scholar
de Gramont A et al (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13(12):1225–1233 PubMed Google Scholar
Yang Y et al (2016) Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun 7:12680 CASPubMedPubMed Central Google Scholar
Haemmerle M et al (2016) FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 126(5):1885–1896 PubMedPubMed Central Google Scholar
Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231 CASPubMedPubMed Central Google Scholar
Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239 CASPubMedPubMed Central Google Scholar
Wang N, Jain RK, Batchelor TT (2017) New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics 14(2):321–332 CASPubMedPubMed Central Google Scholar
Lucio-Eterovic AK, Piao Y, de Groot JF (2009) Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 15(14):4589–4599 CASPubMed Google Scholar
Lu KV et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22(1):21–35 CASPubMedPubMed Central Google Scholar
Jahangiri A et al (2017) Cross-activating c-Met/beta1 integrin complex drives metastasis and invasive resistance in cancer. Proc Natl Acad Sci USA 114(41):E8685–E8694 CASPubMedPubMed Central Google Scholar
Zarrin B et al (2017) Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance. J Res Med Sci 22:117 CASPubMedPubMed Central Google Scholar
Liu ZJ, Semenza GL, Zhang HF (2015) Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 16(1):32–43 CASPubMedPubMed Central Google Scholar
Serova M et al (2016) Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib. Oncotarget 7(25):38467–38486 PubMedPubMed Central Google Scholar
Shaaban S et al (2016) Targeting bone marrow to potentiate the anti-tumor effect of tyrosine kinase inhibitor in preclinical rat model of human glioblastoma. Int J Cancer Res 12(2):69–81 CASPubMedPubMed Central Google Scholar
Moccia F et al (2015) Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumour Biol 36(9):6603–6614 CASPubMed Google Scholar
Rivera LB et al (2015) Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep 11(4):577–591 CASPubMedPubMed Central Google Scholar
Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96(12):1788–1795 CASPubMedPubMed Central Google Scholar
Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427 CASPubMed Google Scholar
Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121 CASPubMed Google Scholar
Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989 CASPubMed Google Scholar
Jayson GC, Hicklin DJ, Ellis LM (2012) Antiangiogenic therapy—evolving view based on clinical trial results. Nat Rev Clin Oncol 9(5):297–303 CASPubMed Google Scholar
Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851 CASPubMedPubMed Central Google Scholar
Sorensen AG et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69(13):5296–5300 CASPubMed Google Scholar
Batchelor TT et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110(47):19059–19064 CASPubMedPubMed Central Google Scholar
Sorensen AG et al (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72(2):402–407 CASPubMed Google Scholar
Shrimali RK et al (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70(15):6171–6180 CASPubMed Google Scholar
Xin H et al (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513 CASPubMedPubMed Central Google Scholar
Adotevi O et al (2010) A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother 33(9):991–998 CASPubMed Google Scholar
Martino EC et al (2016) Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov 2:16025 CASPubMedPubMed Central Google Scholar
Olsson AK (2014) Therapeutic vaccination targeting the tumour vasculature. Biochem Soc Trans 42(6):1653–1657 CASPubMed Google Scholar
Huijbers EJ et al (2010) Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J 24(11):4535–4544 CASPubMed Google Scholar
Femel J et al (2014) Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget 5(23):12418–12427 PubMedPubMed Central Google Scholar
Chaudhary A et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21(2):212–226 CASPubMedPubMed Central Google Scholar
Szot C et al (2018) Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J Clin Invest 128(7):2927–2943 PubMedPubMed Central Google Scholar
Byrd TT et al (2018) TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res 78(2):489–500 CASPubMed Google Scholar
Hamzah J et al (2008) Vascular targeting of anti-CD40 antibodies and IL-2 into autochthonous tumors enhances immunotherapy in mice. J Clin Invest 118(5):1691–1699 CASPubMedPubMed Central Google Scholar
Johansson A et al (2012) Tumor-targeted TNFalpha stabilizes tumor vessels and enhances active immunotherapy. Proc Natl Acad Sci USA 109(20):7841–7846 CASPubMedPubMed Central Google Scholar
Khan KA, Kerbel RS (2018) Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 15(5):310–324 CASPubMed Google Scholar
Georganaki M, van Hooren L, Dimberg A (2018) Vascular targeting to increase the efficiency of immune checkpoint blockade in cancer. Front Immunol 9:3081 CASPubMedPubMed Central Google Scholar
Hayasaka H et al (2010) Neogenesis and development of the high endothelial venules that mediate lymphocyte trafficking. Cancer Sci 101(11):2302–2308 CASPubMed Google Scholar
Hindley JP et al (2012) T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion. Cancer Res 72(21):5473–5482 CASPubMedPubMed Central Google Scholar
Colbeck EJ et al (2017) Treg depletion licenses T cell-driven HEV neogenesis and promotes tumor destruction. Cancer Immunol Res 5(11):1005–1015 CASPubMedPubMed Central Google Scholar
Allen E et al (2017) Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 9(385):eaak9679 PubMedPubMed Central Google Scholar
He B et al (2018) Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J Pathol 245(2):209–221 CASPubMedPubMed Central Google Scholar
Patel MM, Patel BM (2017) Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2):109–133 CASPubMed Google Scholar
Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550 CASPubMed Google Scholar
Tewari KS et al (2017) Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 390(10103):1654–1663 CASPubMedPubMed Central Google Scholar
Perren TJ et al (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365(26):2484–2496 CASPubMed Google Scholar
Escudier B et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111 PubMed Google Scholar
Wick W et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377(20):1954–1963 CASPubMed Google Scholar
Fuchs CS et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39 CASPubMed Google Scholar
Tabernero J et al (2015) Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16(5):499–508 CASPubMed Google Scholar
Zhu AX et al (2019) Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20(2):282–296 CASPubMed Google Scholar
Garon EB et al (2014) Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384(9944):665–673 CASPubMed Google Scholar
Bonner JA et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578 CASPubMed Google Scholar
Heinemann V et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1065–1075 CASPubMed Google Scholar
Price TJ et al (2014) Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 15(6):569–579 CASPubMed Google Scholar
Thatcher N et al (2015) Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol 16(7):763–774 CASPubMed Google Scholar
Gianni L et al (2014) Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15(6):640–647 CASPubMed Google Scholar
Bang YJ et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697 CASPubMed Google Scholar
Hurvitz SA et al (2018) Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 19(1):115–126 CASPubMed Google Scholar
Llovet JM et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390 CASPubMed Google Scholar
Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134 CASPubMed Google Scholar
Brose MS et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940):319–328 CASPubMedPubMed Central Google Scholar
Demetri GD et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338 CASPubMed Google Scholar
Raymond E et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364(6):501–513 CASPubMed Google Scholar
Motzer RJ et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27(22):3584–3590 CASPubMedPubMed Central Google Scholar
Dematteo RP et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104 CASPubMedPubMed Central Google Scholar
Druker BJ et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417 CASPubMed Google Scholar
Fielding AK et al (2014) UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood 123(6):843–850 CASPubMedPubMed Central Google Scholar
Motzer RJ et al (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369(8):722–731 CASPubMed Google Scholar
van der Graaf WT et al (2012) Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379(9829):1879–1886 PubMed Google Scholar
Kim ES et al (2008) Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 372(9652):1809–1818 CASPubMed Google Scholar
Lee SM et al (2012) First-line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy (TOPICAL): a double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 13(11):1161–1170 CASPubMedPubMed Central Google Scholar
Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966 CASPubMed Google Scholar
Wells SA Jr et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30(2):134–141 CASPubMed Google Scholar
Li J et al (2015) Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 16(6):619–629 CASPubMed Google Scholar
Demetri GD et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302 CASPubMed Google Scholar
Bruix J et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389(10064):56–66 CASPubMed Google Scholar
Martin M et al (2017) Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18(12):1688–1700 CASPubMed Google Scholar
Baselga J et al (2012) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379(9816):633–640 CASPubMedPubMed Central Google Scholar
Sequist LV et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31(27):3327–3334 CASPubMed Google Scholar
Rini BI et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378(9807):1931–1939 CASPubMed Google Scholar
Abou-Alfa GK et al (2018) Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med 379(1):54–63 CASPubMedPubMed Central Google Scholar
Powles T et al (2018) Outcomes based on prior therapy in the phase 3 METEOR trial of cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 119(6):663–669 CASPubMedPubMed Central Google Scholar
Kudo M et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126):1163–1173 CASPubMed Google Scholar
Schlumberger M et al (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372(7):621–630 PubMed Google Scholar
Tabernero J et al (2014) Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: prespecified subgroup analyses from the VELOUR trial. Eur J Cancer 50(2):320–331 CASPubMed Google Scholar
Rajkumar SV et al (2002) Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J Clin Oncol 20(21):4319–4323 CASPubMed Google Scholar
Rajkumar SV et al (2010) Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 11(1):29–37 CASPubMed Google Scholar
Motzer RJ et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456 CASPubMed Google Scholar
Baselga J et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529 CASPubMed Google Scholar
Pavel ME et al (2017) Health-related quality of life for everolimus versus placebo in patients with advanced, non-functional, well-differentiated gastrointestinal or lung neuroendocrine tumours (RADIANT-4): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18(10):1411–1422 CASPubMed Google Scholar
Franz DN et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132 CASPubMed Google Scholar