P66shc and its role in ischemic cardiovascular diseases (original) (raw)

References

  1. Ahmed SBM, Prigent SA (2017) Insights into the Shc family of adaptor proteins. J Mol Signal 12:2. https://doi.org/10.5334/1750-2187-12-2
    Article CAS PubMed PubMed Central Google Scholar
  2. Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallee JP, Mach F, Luscher TF (2015) Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 36:516–526a. https://doi.org/10.1093/eurheartj/ehu400
    Article CAS PubMed Google Scholar
  3. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 111:10580–10585. https://doi.org/10.1073/pnas.1401591111
    Article CAS PubMed PubMed Central Google Scholar
  4. Albiero M, Ciciliot S, Tedesco S, Menegazzo L, D’Anna M, Scattolini V, Cappellari R, Zuccolotto G, Rosato A, Cignarella A, Giorgio M, Avogaro A, Fadini GP (2019) Diabetes-associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. Diabetes. https://doi.org/10.2337/db19-0080
    Article PubMed Google Scholar
  5. Albiero M, Poncina N, Tjwa M, Ciciliot S, Menegazzo L, Ceolotto G, Vigili de Kreutzenberg S, Moura R, Giorgio M, Pelicci P, Avogaro A, Fadini GP (2014) Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 63:1353–1365. https://doi.org/10.2337/db13-0894
    Article CAS PubMed Google Scholar
  6. Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172:1587–1606. https://doi.org/10.1111/bph.12811
    Article CAS PubMed Google Scholar
  7. Asalla S, Girada SB, Kuna RS, Chowdhury D, Kandagatla B, Oruganti S, Bhadra U, Bhadra MP, Kalivendi SV, Rao SP, Row A, Ibrahim A, Ghosh PP, Mitra P (2016) Restoring mitochondrial function: a small molecule-mediated approach to enhance glucose stimulated insulin secretion in cholesterol accumulated pancreatic beta cells. Sci Rep 6:27513. https://doi.org/10.1038/srep27513
    Article CAS PubMed PubMed Central Google Scholar
  8. Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O, Tyynela J, Saris NE (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77. https://doi.org/10.1016/j.ceca.2013.12.002
    Article CAS PubMed Google Scholar
  9. Bashir M, Parray AA, Baba RA, Bhat HF, Bhat SS, Mushtaq U, Andrabi KI, Khanday FA (2014) beta-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromolecular Med 16:137–149. https://doi.org/10.1007/s12017-013-8268-4
    Article CAS PubMed Google Scholar
  10. Baysa A, Sagave J, Carpi A, Zaglia T, Campesan M, Dahl CP, Bilbija D, Troitskaya M, Gullestad L, Giorgio M, Mongillo M, Di Lisa F, Vaage JI, Valen G (2015) The p66ShcA adaptor protein regulates healing after myocardial infarction. Basic Res Cardiol 110:13. https://doi.org/10.1007/s00395-015-0470-0
    Article CAS PubMed Google Scholar
  11. Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG, Giorgio M (2008) p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 283:34283–34293. https://doi.org/10.1074/jbc.M804362200
    Article CAS PubMed PubMed Central Google Scholar
  12. Boengler K, Bencsik P, Paloczi J, Kiss K, Pipicz M, Pipis J, Ferdinandy P, Schluter KD, Schulz R (2017) Lack of contribution of p66shc and its mitochondrial translocation to ischemia–reperfusion injury and cardioprotection by ischemic preconditioning. Front Physiol 8:733. https://doi.org/10.3389/fphys.2017.00733
    Article PubMed PubMed Central Google Scholar
  13. Boengler K, Lochnit G, Schulz R (2018) Mitochondria “THE” target of myocardial conditioning. Am J Physiol Heart Circ Physiol 315:H1215–H1231. https://doi.org/10.1152/ajpheart.00124.2018
    Article PubMed Google Scholar
  14. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, McCay PB (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86:4695–4699
    Article CAS PubMed PubMed Central Google Scholar
  15. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8
    Article CAS PubMed PubMed Central Google Scholar
  16. Brown JE, Zeiger SL, Hettinger JC, Brooks JD, Holt B, Morrow JD, Musiek ES, Milne G, McLaughlin B (2010) Essential role of the redox-sensitive kinase p66shc in determining energetic and oxidative status and cell fate in neuronal preconditioning. J Neurosci 30:5242–5252. https://doi.org/10.1523/jneurosci.6366-09.2010
    Article CAS PubMed PubMed Central Google Scholar
  17. Cai X, Hu Y, Tang H, Hu H, Pang L, Xing J, Liu Z, Luo Y, Jiang B, Liu T, Gorospe M, Chen C, Wang W (2016) RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. Oncotarget 7:19099–19110. https://doi.org/10.18632/oncotarget.8087
    Article PubMed PubMed Central Google Scholar
  18. Camici GG, Savarese G, Akhmedov A, Luscher TF (2015) Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J 36:3392–3403. https://doi.org/10.1093/eurheartj/ehv587
    Article CAS PubMed Google Scholar
  19. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Luscher TF, Cosentino F (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA 104:5217–5222. https://doi.org/10.1073/pnas.0609656104
    Article CAS PubMed PubMed Central Google Scholar
  20. Carlomosti F, D’Agostino M, Beji S, Torcinaro A, Rizzi R, Zaccagnini G, Maimone B, Di Stefano V, De Santa F, Cordisco S, Antonini A, Ciarapica R, Dellambra E, Martelli F, Avitabile D, Capogrossi MC, Magenta A (2017) Oxidative stress-induced miR-200c disrupts the regulatory loop among SIRT1, FOXO1, and eNOS. Antioxid Redox Signal 27:328–344. https://doi.org/10.1089/ars.2016.6643
    Article CAS PubMed Google Scholar
  21. Carpi A, Menabo R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M (2009) The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 1787:774–780. https://doi.org/10.1016/j.bbabio.2009.04.001
    Article CAS PubMed Google Scholar
  22. Ciciliot S, Albiero M, Campanaro S, Poncina N, Tedesco S, Scattolini V, Dalla Costa F, Cignarella A, Vettore M, Di Gangi IM, Bogialli S, Avogaro A, Fadini GP (2018) Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance. FASEB J 32:4004–4015. https://doi.org/10.1096/fj.201701409R
    Article CAS PubMed Google Scholar
  23. Ciciliot S, Albiero M, Menegazzo L, Poncina N, Scattolini V, Danesi A, Pagnin E, Marabita M, Blaauw B, Giorgio M, Trinei M, Foletto M, Prevedello L, Nitti D, Avogaro A, Fadini GP (2015) p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia 58:2352–2360. https://doi.org/10.1007/s00125-015-3667-8
    Article CAS PubMed Google Scholar
  24. Ciciliot S, Fadini GP (2019) Modulation of obesity and insulin resistance by the redox enzyme and adaptor protein p66(Shc). Int J Mol Sci 20:E985. https://doi.org/10.3390/ijms20040985
    Article CAS PubMed Google Scholar
  25. Costantino S, Paneni F, Mitchell K, Mohammed SA, Hussain S, Gkolfos C, Berrino L, Volpe M, Schwarzwald C, Luscher TF, Cosentino F (2018) Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66(Shc). Int J Cardiol 268:179–186. https://doi.org/10.1016/j.ijcard.2018.04.082
    Article PubMed Google Scholar
  26. Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, Akhmedov A, Dalgaard K, Chiandotto S, Pospisilik JA, Jenuwein T, Giorgio M, Volpe M, Taddei S, Luscher TF, Cosentino F (2019) Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J 40:383–391. https://doi.org/10.1093/eurheartj/ehx615
    Article PubMed Google Scholar
  27. Davidson SM, Ferdinandy P, Andreadou I, Botker HE, Heusch G, Ibanez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, Garcia-Dorado D (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 73:89–99. https://doi.org/10.1016/j.jacc.2018.09.086
    Article PubMed Google Scholar
  28. Derungs R, Camici GG, Spescha RD, Welt T, Tackenberg C, Spani C, Wirth F, Grimm A, Eckert A, Nitsch RM, Kulic L (2017) Genetic ablation of the p66(Shc) adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer’s disease. Mol Psychiatry 22:605–614. https://doi.org/10.1038/mp.2016.112
    Article CAS PubMed Google Scholar
  29. Di Lisa F, Giorgio M, Ferdinandy P, Schulz R (2017) New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 174:1690–1703. https://doi.org/10.1111/bph.13478
    Article CAS PubMed Google Scholar
  30. Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertran E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Forstermann U, Giniatullin R, Giricz Z, Gorbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustin P, Hillion M, Huang J, Ilikay S, Jansen-Durr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kracun D, Krause KH, Kren V, Krieg T, Laranjinha J, Lazou A, Li H, Martinez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milkovic L, Miranda-Vizuete A, Mojovic M, Monsalve M, Mouthuy PA, Mulvey J, Munzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N et al (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162. https://doi.org/10.1016/j.redox.2017.05.007
    Article CAS PubMed PubMed Central Google Scholar
  31. Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, Cosma C, Lapolla A, Pengo V, Stendardo M, Agostini C, Pelicci PG, Giorgio M, Avogaro A (2010) The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59:2306–2314. https://doi.org/10.2337/db09-1727
    Article CAS PubMed PubMed Central Google Scholar
  32. Feng D, Yao J, Wang G, Li Z, Zu G, Li Y, Luo F, Ning S, Qasim W, Chen Z, Tian X (2017) Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats. Clin Sci (Lond) 131:759–773. https://doi.org/10.1042/cs20160799
    Article CAS Google Scholar
  33. Ferdinandy P, Baczko I, Bencsik P, Giricz Z, Gorbe A, Pacher P, Varga ZV, Varro A, Schulz R (2018) Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy365
    Article PubMed Central Google Scholar
  34. Franzeck FC, Hof D, Spescha RD, Hasun M, Akhmedov A, Steffel J, Shi Y, Cosentino F, Tanner FC, von Eckardstein A, Maier W, Luscher TF, Wyss CA, Camici GG (2012) Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 220:282–286. https://doi.org/10.1016/j.atherosclerosis.2011.10.035
    Article CAS PubMed Google Scholar
  35. Frijhoff J, Dagnell M, Augsten M, Beltrami E, Giorgio M, Ostman A (2014) The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic Biol Med 68:268–277. https://doi.org/10.1016/j.freeradbiomed.2013.12.022
    Article CAS PubMed Google Scholar
  36. Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987) Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 61:757–760
    Article CAS PubMed Google Scholar
  37. Gerber PA, Rutter GA (2017) The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 26:501–518. https://doi.org/10.1089/ars.2016.6755
    Article CAS PubMed PubMed Central Google Scholar
  38. Gertz M, Fischer F, Wolters D, Steegborn C (2008) Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci USA 105:5705–5709. https://doi.org/10.1073/pnas.0800691105
    Article PubMed PubMed Central Google Scholar
  39. Giorgio M, Berry A, Berniakovich I, Poletaeva I, Trinei M, Stendardo M, Hagopian K, Ramsey JJ, Cortopassi G, Migliaccio E, Notzli S, Amrein I, Lipp HP, Cirulli F, Pelicci PG (2012) The p66Shc knocked out mice are short lived under natural condition. Aging Cell 11:162–168. https://doi.org/10.1111/j.1474-9726.2011.00770.x
    Article CAS PubMed Google Scholar
  40. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233. https://doi.org/10.1016/j.cell.2005.05.011
    Article CAS PubMed Google Scholar
  41. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. https://doi.org/10.1073/pnas.1217823110
    Article CAS PubMed PubMed Central Google Scholar
  42. Graiani G, Lagrasta C, Migliaccio E, Spillmann F, Meloni M, Madeddu P, Quaini F, Padura IM, Lanfrancone L, Pelicci P, Emanueli C (2005) Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension 46:433–440. https://doi.org/10.1161/01.HYP.0000174986.73346.ba
    Article CAS PubMed Google Scholar
  43. Grimaldi V, Vietri MT, Schiano C, Picascia A, De Pascale MR, Fiorito C, Casamassimi A, Napoli C (2015) Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep 17:476. https://doi.org/10.1007/s11883-014-0476-3
    Article CAS PubMed Google Scholar
  44. Haller M, Khalid S, Kremser L, Fresser F, Furlan T, Hermann M, Guenther J, Drasche A, Leitges M, Giorgio M, Baier G, Lindner H, Troppmair J (2016) Novel Insights into the PKCbeta-dependent regulation of the oxidoreductase p66Shc. J Biol Chem 291:23557–23568. https://doi.org/10.1074/jbc.M116.752766
    Article CAS PubMed PubMed Central Google Scholar
  45. Hausenloy DJ, Garcia-Dorado D, Botker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P (2017) Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 113:564–585. https://doi.org/10.1093/cvr/cvx049
    Article CAS PubMed Google Scholar
  46. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. https://doi.org/10.1016/j.cardiores.2006.01.017
    Article CAS PubMed Google Scholar
  47. Heusch G (2015) Mitochondria at the heart of cardiovascular protection: p66shc-friend or foe? Eur Heart J 36:469–471. https://doi.org/10.1093/eurheartj/ehu409
    Article PubMed Google Scholar
  48. Karunakaran U, Elumalai S, Moon JS, Won KC (2019) CD36 dependent redoxosomes promotes ceramide-mediated pancreatic beta-cell failure via p66Shc activation. Free Radic Biol Med 134:505–515. https://doi.org/10.1016/j.freeradbiomed.2019.02.004
    Article CAS PubMed Google Scholar
  49. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf MI, Fresser F, Baier G, Kremser L, Lindner H, Troppmair J (2016) cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep 6:20930. https://doi.org/10.1038/srep20930
    Article CAS PubMed PubMed Central Google Scholar
  50. Khanday FA, Yamamori T, Mattagajasingh I, Zhang Z, Bugayenko A, Naqvi A, Santhanam L, Nabi N, Kasuno K, Day BW, Irani K (2006) Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 17:122–129. https://doi.org/10.1091/mbc.e05-06-0570
    Article CAS PubMed PubMed Central Google Scholar
  51. Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara DM, Irani K (2011) Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 92:466–475. https://doi.org/10.1093/cvr/cvr250
    Article CAS PubMed PubMed Central Google Scholar
  52. Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M (2017) ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 312:C749–C764. https://doi.org/10.1152/ajpcell.00346.2016
    Article PubMed PubMed Central Google Scholar
  53. Kim YR, Kim CS, Naqvi A, Kumar A, Kumar S, Hoffman TA, Irani K (2012) Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol 303:H189–H196. https://doi.org/10.1152/ajpheart.01218.2011
    Article CAS PubMed PubMed Central Google Scholar
  54. Koncsos G, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, Schluter KD, Schreckenberg R, Radovits T, Olah A, Matyas C, Lux A, Al-Khrasani M, Komlodi T, Bukosza N, Mathe D, Deres L, Bartekova M, Rajtik T, Adameova A, Szigeti K, Hamar P, Helyes Z, Tretter L, Pacher P, Merkely B, Giricz Z, Schulz R, Ferdinandy P (2016) Diastolic dysfunction in prediabetic male rats: role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 311:H927–H943. https://doi.org/10.1152/ajpheart.00049.2016
    Article PubMed PubMed Central Google Scholar
  55. Koncsos G, Varga ZV, Baranyai T, Ferdinandy P, Schulz R, Giricz Z, Boengler K (2018) Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. J Pharmacol Toxicol Methods 91:50–58. https://doi.org/10.1016/j.vascn.2018.01.004
    Article CAS PubMed Google Scholar
  56. Kong X, Guan J, Li J, Wei J, Wang R (2017) P66(Shc)-SIRT1 regulation of oxidative stress protects against cardio-cerebral vascular disease. Mol Neurobiol 54:5277–5285. https://doi.org/10.1007/s12035-016-0073-2
    Article CAS PubMed Google Scholar
  57. Kumar S (2019) P66Shc and vascular endothelial function. Biosci Rep. https://doi.org/10.1042/bsr20182134
    Article PubMed PubMed Central Google Scholar
  58. Kumar S, Kim YR, Vikram A, Naqvi A, Li Q, Kassan M, Kumar V, Bachschmid MM, Jacobs JS, Kumar A, Irani K (2017) Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA 114:1714–1719. https://doi.org/10.1073/pnas.1614112114
    Article CAS PubMed PubMed Central Google Scholar
  59. Lee SK, Chung JI, Park MS, Joo HK, Lee EJ, Cho EJ, Park JB, Ryoo S, Irani K, Jeon BH (2011) Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction. Cardiovasc Res 91:502–509. https://doi.org/10.1093/cvr/cvr095
    Article CAS PubMed PubMed Central Google Scholar
  60. Li M, Sala V, De Santis MC, Cimino J, Cappello P, Pianca N, Di Bona A, Margaria JP, Martini M, Lazzarini E, Pirozzi F, Rossi L, Franco I, Bornbaum J, Heger J, Rohrbach S, Perino A, Tocchetti CG, Lima BHF, Teixeira MM, Porporato PE, Schulz R, Angelini A, Sandri M, Ameri P, Sciarretta S, Lima-Junior RCP, Mongillo M, Zaglia T, Morello F, Novelli F, Hirsch E, Ghigo A (2018) Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation 138:696–711. https://doi.org/10.1161/circulationaha.117.030352
    Article CAS PubMed Google Scholar
  61. Li Q, Kim YR, Vikram A, Kumar S, Kassan M, Gabani M, Lee SK, Jacobs JS, Irani K (2016) P66Shc-induced microRNA-34a causes diabetic endothelial dysfunction by downregulating sirtuin1. Arterioscler Thromb Vasc Biol 36:2394–2403. https://doi.org/10.1161/atvbaha.116.308321
    Article CAS PubMed PubMed Central Google Scholar
  62. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792
    Article CAS PubMed Google Scholar
  63. Malhotra A, Vashistha H, Yadav VS, Dube MG, Kalra SP, Abdellatif M, Meggs LG (2009) Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol 296:H380–H388. https://doi.org/10.1152/ajpheart.00225.2008
    Article CAS PubMed Google Scholar
  64. Marques-Aleixo I, Santos-Alves E, Mariani D, Rizo-Roca D, Padrao AI, Rocha-Rodrigues S, Viscor G, Torrella JR, Ferreira R, Oliveira PJ, Magalhaes J, Ascensao A (2015) Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion 20:22–33. https://doi.org/10.1016/j.mito.2014.10.008
    Article CAS PubMed Google Scholar
  65. Martin-Padura I, de Nigris F, Migliaccio E, Mansueto G, Minardi S, Rienzo M, Lerman LO, Stendardo M, Giorgio M, De Rosa G, Pelicci PG, Napoli C (2008) p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 15:276–287. https://doi.org/10.1080/10623320802487791
    Article CAS PubMed Google Scholar
  66. Meng G, Zhao S, Xie L, Han Y, Ji Y (2018) Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 175:1146–1156. https://doi.org/10.1111/bph.13825
    Article CAS PubMed Google Scholar
  67. Miao Q, Wang Q, Dong L, Wang Y, Tan Y, Zhang X (2015) The expression of p66shc in peripheral blood monocytes is increased in patients with coronary heart disease and correlated with endothelium-dependent vasodilatation. Heart Vessels 30:451–457. https://doi.org/10.1007/s00380-014-0497-4
    Article PubMed Google Scholar
  68. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313. https://doi.org/10.1038/46311
    Article CAS PubMed Google Scholar
  69. Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16:706–716. https://doi.org/10.1093/emboj/16.4.706
    Article CAS PubMed PubMed Central Google Scholar
  70. Mishra M, Duraisamy AJ, Bhattacharjee S, Kowluru RA (2018) Adaptor protein p66Shc: a link between cytosolic and mitochondrial dysfunction in the development of diabetic retinopathy. Antioxid Redox Signal. https://doi.org/10.1089/ars.2018.7542
    Article PubMed Google Scholar
  71. Miyazawa M, Tsuji Y (2014) Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell 25:2116–2127. https://doi.org/10.1091/mbc.E13-11-0666
    Article CAS PubMed PubMed Central Google Scholar
  72. Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C, Wieckowski MR, Pinton P (2017) Mechanistic role of mPTP in ischemia–reperfusion injury. Adv Exp Med Biol 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9
    Article CAS PubMed Google Scholar
  73. Mukhuty A, Fouzder C, Mukherjee S, Malick C, Mukhopadhyay S, Bhattacharya S, Kundu R (2017) Palmitate induced Fetuin-A secretion from pancreatic beta-cells adversely affects its function and elicits inflammation. Biochem Biophys Res Commun 491:1118–1124. https://doi.org/10.1016/j.bbrc.2017.08.022
    Article CAS PubMed Google Scholar
  74. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007
    Article CAS PubMed Google Scholar
  75. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 100:2112–2116. https://doi.org/10.1073/pnas.0336359100
    Article CAS PubMed PubMed Central Google Scholar
  76. Natalicchio A, Tortosa F, Labarbuta R, Biondi G, Marrano N, Carchia E, Leonardini A, Cignarelli A, Bugliani M, Marchetti P, Fadini GP, Giorgio M, Avogaro A, Perrini S, Laviola L, Giorgino F (2015) The p66(Shc) redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia 58:1260–1271. https://doi.org/10.1007/s00125-015-3563-2
    Article CAS PubMed Google Scholar
  77. Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, Finkel T (2006) The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem 281:10555–10560. https://doi.org/10.1074/jbc.M511626200
    Article CAS PubMed Google Scholar
  78. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550. https://doi.org/10.1042/bcj20160503c
    Article CAS PubMed Google Scholar
  79. Onnis A, Cianfanelli V, Cassioli C, Samardzic D, Pelicci PG, Cecconi F, Baldari CT (2018) The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy 14:2117–2138. https://doi.org/10.1080/15548627.2018.1505153
    Article CAS PubMed PubMed Central Google Scholar
  80. Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695. https://doi.org/10.1074/jbc.M401844200
    Article CAS PubMed Google Scholar
  81. Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuhr F, Levitan I, Fukai T, Ushio-Fukai M (2012) Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 302:H724–H732. https://doi.org/10.1152/ajpheart.00739.2011
    Article CAS PubMed Google Scholar
  82. Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A (2005) Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab 90:1130–1136. https://doi.org/10.1210/jc.2004-1283
    Article CAS PubMed Google Scholar
  83. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739
    CAS PubMed Google Scholar
  84. Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748
    CAS PubMed Google Scholar
  85. Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, Luscher TF, Cosentino F (2012) Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res 111:278–289. https://doi.org/10.1161/circresaha.112.266593
    Article CAS PubMed Google Scholar
  86. Perez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC (2018) p66(Shc) inactivation modifies RNS production, regulates Sirt3 activity, and improves mitochondrial homeostasis, delaying the aging process in mouse brain. Oxid Med Cell Longev 2018:8561892. https://doi.org/10.1155/2018/8561892
    Article CAS PubMed PubMed Central Google Scholar
  87. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663. https://doi.org/10.1126/science.1135380
    Article CAS PubMed Google Scholar
  88. Plecita-Hlavata L, Jezek P (2016) Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80:31–50. https://doi.org/10.1016/j.biocel.2016.09.010
    Article CAS PubMed Google Scholar
  89. Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429. https://doi.org/10.1016/j.tem.2015.05.010
    Article CAS PubMed PubMed Central Google Scholar
  90. Qu B, Gong K, Yang H, Li Y, Jiang T, Zeng Z, Cao Z, Pan X (2018) SIRT1 suppresses high glucose and palmitate-induced osteoclast differentiation via deacetylating p66Shc. Mol Cell Endocrinol 474:97–104. https://doi.org/10.1016/j.mce.2018.02.015
    Article CAS PubMed Google Scholar
  91. Ramsey JJ, Tran D, Giorgio M, Griffey SM, Koehne A, Laing ST, Taylor SL, Kim K, Cortopassi GA, Lloyd KC, Hagopian K, Tomilov AA, Migliaccio E, Pelicci PG, McDonald RB (2014) The influence of Shc proteins on life span in mice. J Gerontol A Biol Sci Med Sci 69:1177–1185. https://doi.org/10.1093/gerona/glt198
    Article CAS PubMed Google Scholar
  92. Sampaio SF, Branco AF, Wojtala A, Vega-Naredo I, Wieckowski MR, Oliveira PJ (2016) p66Shc signaling is involved in stress responses elicited by anthracycline treatment of rat cardiomyoblasts. Arch Toxicol 90:1669–1684. https://doi.org/10.1007/s00204-015-1583-9
    Article CAS PubMed Google Scholar
  93. Savino C, Pelicci P, Giorgio M (2013) The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. Oxid Med Cell Longev 2013:719407. https://doi.org/10.1155/2013/719407
    Article CAS PubMed PubMed Central Google Scholar
  94. Sentinelli F, Romeo S, Barbetti F, Berni A, Filippi E, Fanelli M, Fallarino M, Baroni MG (2006) Search for genetic variants in the p66Shc longevity gene by PCR-single strand conformational polymorphism in patients with early-onset cardiovascular disease. BMC Genet 7:14. https://doi.org/10.1186/1471-2156-7-14
    Article CAS PubMed PubMed Central Google Scholar
  95. Shahzad K, Gadi I, Nazir S, Al-Dabet MM, Kohli S, Bock F, Breitenstein L, Ranjan S, Fuchs T, Halloul Z, Nawroth PP, Pelicci PG, Braun-Dullaeus RC, Camerer E, Esmon CT, Isermann B (2018) Activated protein C reverses epigenetically sustained p66(Shc) expression in plaque-associated macrophages in diabetes. Commun Biol 1:104. https://doi.org/10.1038/s42003-018-0108-5
    Article CAS PubMed PubMed Central Google Scholar
  96. Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, Luscher TF (2011) Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol 31:2090–2097. https://doi.org/10.1161/atvbaha.111.229260
    Article CAS PubMed Google Scholar
  97. Shi Y, Luscher TF, Camici GG (2014) Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS One 9:e107787. https://doi.org/10.1371/journal.pone.0107787
    Article CAS PubMed PubMed Central Google Scholar
  98. Skyschally A, Schulz R, Gres P, Korth HG, Heusch G (2003) Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ Physiol 284:H698–H703. https://doi.org/10.1152/ajpheart.00693.2002
    Article CAS PubMed Google Scholar
  99. Spescha RD, Klohs J, Semerano A, Giacalone G, Derungs RS, Reiner MF, Rodriguez Gutierrez D, Mendez-Carmona N, Glanzmann M, Savarese G, Krankel N, Akhmedov A, Keller S, Mocharla P, Kaufmann MR, Wenger RH, Vogel J, Kulic L, Nitsch RM, Beer JH, Peruzzotti-Jametti L, Sessa M, Luscher TF, Camici GG (2015) Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke. Eur Heart J 36:1590–1600. https://doi.org/10.1093/eurheartj/ehv140
    Article CAS PubMed Google Scholar
  100. Tomilov AA, Bicocca V, Schoenfeld RA, Giorgio M, Migliaccio E, Ramsey JJ, Hagopian K, Pelicci PG, Cortopassi GA (2010) Decreased superoxide production in macrophages of long-lived p66Shc knock-out mice. J Biol Chem 285:1153–1165. https://doi.org/10.1074/jbc.M109.017491
    Article CAS PubMed Google Scholar
  101. Tomilov AA, Ramsey JJ, Hagopian K, Giorgio M, Kim KM, Lam A, Migliaccio E, Lloyd KC, Berniakovich I, Prolla TA, Pelicci P, Cortopassi GA (2011) The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 10:55–65. https://doi.org/10.1111/j.1474-9726.2010.00641.x
    Article CAS PubMed Google Scholar
  102. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878. https://doi.org/10.1038/sj.onc.1205513
    Article CAS PubMed Google Scholar
  103. Vikram A, Kim YR, Kumar S, Naqvi A, Hoffman TA, Kumar A, Miller FJ Jr, Kim CS, Irani K (2014) Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler Thromb Vasc Biol 34:2301–2309. https://doi.org/10.1161/atvbaha.114.304338
    Article CAS PubMed PubMed Central Google Scholar
  104. Wang J, Qi J, Wu Q, Jiang H, Yin Y, Huan Y, Zhao Y, Zhu M (2019) Propofol attenuates high glucose-induced P66shc expression in human umbilical vein endothelial cells through Sirt1. Acta Biochim Biophys Sin (Shanghai) 51:197–203. https://doi.org/10.1093/abbs/gmy167
    Article Google Scholar
  105. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743
    Article CAS PubMed Google Scholar
  106. Wils J, Favre J, Bellien J (2017) Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 170:98–115. https://doi.org/10.1016/j.pharmthera.2016.10.014
    Article CAS PubMed Google Scholar
  107. Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, Su X, Ke Y, Ling W (2019) Inhibition of _S_-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-mediated oxidative stress pathway. Circulation. https://doi.org/10.1161/circulationaha.118.036336
    Article PubMed PubMed Central Google Scholar
  108. Xie ZZ, Liu Y, Bian JS (2016) Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev 2016:6043038. https://doi.org/10.1155/2016/6043038
    Article CAS PubMed PubMed Central Google Scholar
  109. Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 21:2531–2542. https://doi.org/10.1089/ars.2013.5604
    Article CAS PubMed PubMed Central Google Scholar
  110. Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z (2017) Arginase-II deficiency extends lifespan in mice. Front Physiol 8:682. https://doi.org/10.3389/fphys.2017.00682
    Article PubMed PubMed Central Google Scholar
  111. Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AK (2014) Reversible blockade of complex I or inhibition of PKCbeta reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 9:e113534. https://doi.org/10.1371/journal.pone.0113534
    Article CAS PubMed PubMed Central Google Scholar
  112. Zhang M, Lin L, Xu C, Chai D, Peng F, Lin J (2018) VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev 2018:1714896. https://doi.org/10.1155/2018/1714896
    Article CAS PubMed PubMed Central Google Scholar
  113. Zhang M, Tang J, Shan H, Zhang Q, Yang X, Zhang J, Li Y (2018) p66Shc mediates mitochondrial dysfunction dependent on PKC activation in airway epithelial cells induced by cigarette smoke. Oxid Med Cell Longev 2018:5837123. https://doi.org/10.1155/2018/5837123
    Article CAS PubMed PubMed Central Google Scholar
  114. Zhao MH, Hu J, Li S, Wu Q, Lu P (2018) P66Shc expression in diabetic rat retina. BMC Ophthalmol 18:58. https://doi.org/10.1186/s12886-018-0724-3
    Article CAS PubMed PubMed Central Google Scholar
  115. Zheng W, Li D, Gao X, Zhang W, Robinson BO (2019) Carvedilol alleviates diabetic cardiomyopathy in diabetic rats. Exp Ther Med 17:479–487. https://doi.org/10.3892/etm.2018.6954
    Article CAS PubMed Google Scholar
  116. Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, Yang H, Lin QX, Gou DM, Wu SL, Shan ZX (2017) Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 7:11879. https://doi.org/10.1038/s41598-017-12192-y
    Article CAS PubMed PubMed Central Google Scholar
  117. Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C (2014) Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromolecular Med 16:772–781. https://doi.org/10.1007/s12017-014-8326-6
    Article CAS PubMed Google Scholar
  118. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407
    Article CAS PubMed PubMed Central Google Scholar

Download references