Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777 ArticleCASPubMedPubMed Central Google Scholar
Brooks B, Arch JR, Newsholme EA (1982) Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett 146:327–330 ArticleCASPubMed Google Scholar
Cannon B, Nedergaard J (2010) Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes 34(Suppl 1):S7–S16. https://doi.org/10.1038/ijo.2010.177 ArticleCAS Google Scholar
Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, Wu J, Gunawardana SC, Banks AS, Camporez J-PG, Jurczak MJ, Kajimura S, Piston DW, Mathis D, Cinti S, Shulman GI, Seale P, Spiegelman BM (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316. https://doi.org/10.1016/j.cell.2013.12.021 ArticleCASPubMedPubMed Central Google Scholar
Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E (2015) Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156:2470–2481. https://doi.org/10.1210/en.2014-2001 ArticleCASPubMedPubMed Central Google Scholar
Eaton M, Granata C, Barry J, Safdar A, Bishop D, Little JP (2017) Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J Sport Health Sci 7:1–6. https://doi.org/10.1016/j.jshs.2017.01.003 Article Google Scholar
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’Agostino RB, O’Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116:39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355 ArticlePubMed Google Scholar
Furuhashi M, Fucho R, Görgün CZ, Tuncman G, Cao H, Hotamisligil GS (2008) Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 118:2640–2650. https://doi.org/10.1172/JCI34750 ArticleCASPubMedPubMed Central Google Scholar
Gao C-L, Zhu C, Zhao Y-P, Chen X-H, Ji C-B, Zhang C-M, Zhu J-G, Xia Z-K, Tong M-L, Guo X-R (2010) Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 320:25–33. https://doi.org/10.1016/j.mce.2010.01.039 ArticleCASPubMed Google Scholar
García-Ruiz E, Reynés B, Díaz-Rúa R, Ceresi E, Oliver P, Palou A (2015) The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. Int J Obes 39:1619–1629. https://doi.org/10.1038/ijo.2015.112 ArticleCAS Google Scholar
Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, Ruderman NB (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524. https://doi.org/10.1074/jbc.M708177200 ArticleCASPubMedPubMed Central Google Scholar
Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101:2016–1681. https://doi.org/10.1210/jc.2016-1681 ArticleCAS Google Scholar
Hanssen MJW, Hoeks J, Brans B, van der Lans AAJJ, Schaart G, van den Driessche JJ, Jörgensen JA, Boekschoten MV, Hesselink MKC, Havekes B, Kersten S, Mottaghy FM, van Marken Lichtenbelt WD, Schrauwen P (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21:863–865. https://doi.org/10.1038/nm.3891 ArticleCASPubMed Google Scholar
Heim T, Hull D (1966) The effect of propranalol on the calorigenic response in brown adipose tissue of new-born rabbits to catecholamines, glucagon, corticotrophin and cold exposure. J Physiol 187:271–283 ArticleCASPubMedPubMed Central Google Scholar
Horowitz JF (2003) Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 14:386–392 ArticleCASPubMed Google Scholar
Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91 ArticleCASPubMed Google Scholar
Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM (2012) Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc Natl Acad Sci U S A 109:9635–9640. https://doi.org/10.1073/pnas.1207287109 ArticlePubMedPubMed Central Google Scholar
Lee P, Brychta RJ, Linderman J, Smith S, Chen KY, Celi FS (2013) Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab 98:E98–E102. https://doi.org/10.1210/jc.2012-3107 ArticleCASPubMed Google Scholar
Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. https://doi.org/10.1016/j.cmet.2013.12.017 ArticleCASPubMed Google Scholar
MacPherson REK, Dragos SM, Ramos S, Sutton C, Frendo-Cumbo S, Castellani L, Watt MJ, Perry CGR, Mutch DM, Wright DC (2016) Reduced ATGL-mediated lipolysis attenuates β-adrenergic-induced AMPK signaling, but not the induction of PKA-targeted genes, in adipocytes and adipose tissue. Am J Phys Cell Phys 311:C269–C276. https://doi.org/10.1152/ajpcell.00126.2016 Article Google Scholar
Mottillo EP, Balasubramanian P, Lee Y-H, Weng C, Kershaw EE, Granneman JG (2014) Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J Lipid Res 55:2276–2286. https://doi.org/10.1194/jlr.M050005 ArticleCASPubMedPubMed Central Google Scholar
Mottillo EP, Desjardins EM, Crane JD, Smith BK, Green AE, Ducommun S, Henriksen TI, Rebalka IA, Razi A, Sakamoto K, Scheele C, Kemp BE, Hawke TJ, Ortega J, Granneman JG, Steinberg GR (2016) Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab 24:118–129. https://doi.org/10.1016/j.cmet.2016.06.006 ArticleCASPubMedPubMed Central Google Scholar
Mottillo EP, Desjardins EM, Fritzen AM, Zou VZ, Crane JD, Yabut JM, Kiens B, Erion DM, Lanba A, Granneman JG, Talukdar S, Steinberg GR (2017) FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis. Mol Metab 6:471–481. https://doi.org/10.1016/j.molmet.2017.04.001 ArticleCASPubMedPubMed Central Google Scholar
Nakhuda A, Josse AR, Gburcik V, Crossland H, Raymond F, Metairon S, Good L, Atherton PJ, Phillips SM, Timmons JA (2016) Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am J Clin Nutr 104:557–565. https://doi.org/10.3945/ajcn.116.132563 ArticleCASPubMedPubMed Central Google Scholar
Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749. https://doi.org/10.1111/febs.12619 ArticleCASPubMed Google Scholar
Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S, Virtanen KA (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279. https://doi.org/10.1016/j.cmet.2011.06.012 ArticleCASPubMed Google Scholar
Orava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerbäck S, Rissanen A, Pietiläinen KH, Virtanen KA (2013) Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring) 21:2279–2287. https://doi.org/10.1002/oby.20456 ArticleCAS Google Scholar
Ostman J, Arner P, Engfeldt P, Kager L (1979) Regional differences in the control of lipolysis in human adipose tissue. Metabolism 28:1198–1205 ArticleCASPubMed Google Scholar
Pekkala S, Wiklund PK, Hulmi JJ, Ahtiainen JP, Horttanainen M, Pöllänen E, Mäkelä KA, Kainulainen H, Häkkinen K, Nyman K, Alén M, Herzig K-H, Cheng S (2013) Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J Physiol 591:5393–5400. https://doi.org/10.1113/jphysiol.2013.263707 ArticleCASPubMedPubMed Central Google Scholar
Peppler WT, Anderson ZG, McCrae LM, MacPherson REK, Wright DC (2016) Habitual physical activity protects against lipopolysaccharide-induced inflammation in mouse adipose tissue. Adipocyte:1–11
Peppler WT, Townsend LK, Knuth CM, Foster MT, Wright DC (2017) Subcutaneous inguinal white adipose tissue is responsive to, but dispensable for, the metabolic health benefits of exercise. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00226.2017
Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447. https://doi.org/10.1016/j.cmet.2014.06.011 ArticleCASPubMed Google Scholar
Pino MF, Parsons SA, Smith SR, Sparks LM (2016) Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obesity (Silver Spring) 24:2467–2470. https://doi.org/10.1002/oby.21669 ArticleCAS Google Scholar
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839 ArticleCASPubMed Google Scholar
Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291. https://doi.org/10.1016/j.cell.2014.03.065 ArticleCASPubMedPubMed Central Google Scholar
Reshef L, Hanson RW, Ballard FJ (1970) A possible physiological role for glyceroneogenesis in rat adipose tissue. J Biol Chem 245:5979–5984 CASPubMed Google Scholar
Richard JE, López-Ferreras L, Chanclón B, Eerola K, Micallef P, Skibicka KP, Wernstedt Asterholm I (2017) CNS β3-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight. Am J Physiol Endocrinol Metab 313:E344–E358. https://doi.org/10.1152/ajpendo.00418.2016 ArticlePubMed Google Scholar
Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. https://doi.org/10.2337/db09-0530 ArticleCASPubMedPubMed Central Google Scholar
Salem V, Izzi-Engbeaya C, Coello C, Thomas DB, Chambers ES, Comninos AN, Buckley A, Win Z, Al-Nahhas A, Rabiner EA, Gunn RN, Budge H, Symonds ME, Bloom SR, Tan TM, Dhillo WS (2016) Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab 18:72–81. https://doi.org/10.1111/dom.12585 ArticleCASPubMed Google Scholar
Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC, Hawkins HK, Toliver-Kinsky T, Herndon DN (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227. https://doi.org/10.1016/j.cmet.2015.06.022 ArticleCASPubMedPubMed Central Google Scholar
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787. https://doi.org/10.1038/nature06902 ArticleCASPubMed Google Scholar
Stallknecht B, Vinten J, Ploug T, Galbo H (1991) Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am J Physiol Endocrinol Metab 261:E410–E414 ArticleCAS Google Scholar
Stanford KI, Middelbeek RJW, Townsend KL, Lee M-Y, Takahashi H, So K, Hitchcox KM, Markan KR, Hellbach K, Hirshman MF, Tseng Y-H, Goodyear LJ (2015) A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64:2002–2014. https://doi.org/10.2337/db14-0704 ArticleCASPubMedPubMed Central Google Scholar
van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403. https://doi.org/10.1172/JCI68993 ArticleCASPubMedPubMed Central Google Scholar
van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Møller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010. https://doi.org/10.1210/jc.2002-021687 ArticleCASPubMed Google Scholar
Vaughan M (1962) The production and release of glycerol by adipose tissue incubated in vitro. J Biol Chem 237:3354–3358 CASPubMed Google Scholar
Wan Z, Root-Mccaig J, Castellani L, Kemp BE, Steinberg GR, Wright DC (2014) Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730–738. https://doi.org/10.1002/oby.20605 ArticleCAS Google Scholar
Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. https://doi.org/10.1016/j.cell.2012.05.016 ArticleCASPubMedPubMed Central Google Scholar
Wu MV, Bikopoulos G, Hung S, Ceddia RB (2014) Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. J Biol Chem 289:34129–34140. https://doi.org/10.1074/jbc.M114.591008 ArticleCASPubMedPubMed Central Google Scholar
Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, Tzan K, Wang A, Parthasarathy S, He G, Rajagopalan S, Sun Q (2011) Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Phys Reg Integr Comp Phys 300:R1115–R1125. https://doi.org/10.1152/ajpregu.00806.2010 ArticleCAS Google Scholar
Yamashita H, Yamamoto M, Sato Y, Izawa T, Komabayashi T, Saito D, Ohno H (1993) Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue. Int J Biometeorol 37:61–64 ArticleCASPubMed Google Scholar