Role of Nitric Oxide Synthases in Parkinson’s Disease: A Review on the Antioxidant and Anti-inflammatory Activity of Polyphenols (original) (raw)
Clifford MN (2004) Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 70:1103–1114 ArticlePubMedCAS Google Scholar
Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S PubMedCAS Google Scholar
Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751 PubMedCAS Google Scholar
Rotondo S, de Gaetano G (2000) Protection from cardiovascular disease by wine and its derived products. Epidemiological evidence and biological mechanisms. World Rev Nutr Diet 87:90–113 ArticlePubMedCAS Google Scholar
Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64 ArticlePubMedCAS Google Scholar
Schaffer S, Eckert GP, Schmitt-Schillig S, Muller WE (2006) Plant foods and brain aging: a critical appraisal. Forum Nutr 59:86–115 ArticlePubMedCAS Google Scholar
Wee LM, Long LH, Whiteman M, Halliwell B (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco’s Modified Eagles Medium. Free Radic Res 37:1123–1130 ArticlePubMedCAS Google Scholar
de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35:1156–1160 ArticlePubMed Google Scholar
Lee KW, Lee HJ (2006) The roles of polyphenols in cancer chemoprevention. Biofactors 26:105–121 PubMedCAS Google Scholar
Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S PubMedCAS Google Scholar
Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584 ArticlePubMedCAS Google Scholar
Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750 ArticlePubMedCAS Google Scholar
Mosley RL, Benner EJ, Kadiu I et al (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281 ArticlePubMedCAS Google Scholar
Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747 PubMedCAS Google Scholar
Mandel S, Amit T, Reznichenko L et al (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234 ArticlePubMedCAS Google Scholar
Youdim KA, Shukitt-Hale B, Joseph JA (2004) Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37:1683–1693 ArticlePubMedCAS Google Scholar
Mokni M, Elkahoui S, Limam F et al (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32:981–987 ArticlePubMedCAS Google Scholar
Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol ()-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569 PubMedCAS Google Scholar
Masella R, Di Benedetto R, Vari R et al (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586 ArticlePubMedCAS Google Scholar
Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96:229–245 ArticlePubMedCAS Google Scholar
Lorenz P, Roychowdhury S, Engelmann M et al (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64–76 ArticlePubMedCAS Google Scholar
Lau FC, Shukitt-Hale B, Joseph JA (2005) The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 26(Suppl 1):128–132 ArticlePubMedCAS Google Scholar
Esposito E, Rotilio D, Di Matteo V et al (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735 ArticlePubMedCAS Google Scholar
Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144 ArticlePubMedCAS Google Scholar
Kidd PM (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–529 PubMedCAS Google Scholar
Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 discussion S36–S28 ArticlePubMedCAS Google Scholar
Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976 ArticlePubMedCAS Google Scholar
Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306 ArticlePubMedCAS Google Scholar
Thiruchelvam M, Brockel BJ, Richfield EK et al (2000) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873:225–234 ArticlePubMedCAS Google Scholar
Thiruchelvam M, Richfield EK, Baggs RB et al (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214 PubMedCAS Google Scholar
Lee MK, Kang SJ, Poncz M et al (2007) Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med 39:376–384 PubMedCAS Google Scholar
Dore S (2005) Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Neurosignals 14:61–70 ArticlePubMedCAS Google Scholar
Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39:682–695 ArticlePubMedCAS Google Scholar
Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516 ArticlePubMedCAS Google Scholar
Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66:S10–S23 PubMed Google Scholar
Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14:1261–1266 ArticlePubMedCAS Google Scholar
Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109 ArticlePubMedCAS Google Scholar
Shukla R, Rajani M, Srivastava N et al (2006) Nitrite and malondialdehyde content in cerebrospinal fluid of patients with Parkinson’s disease. Int J Neurosci 116:1391–1402 ArticlePubMedCAS Google Scholar
Molina JA, Jimenez-Jimenez FJ, Navarro JA et al (1996) Cerebrospinal fluid nitrate levels in patients with Parkinson’s disease. Acta Neurol Scand 93:123–126 ArticlePubMedCAS Google Scholar
Zhang L, Dawson VL, Dawson TM (2006) Role of nitric oxide in Parkinson’s disease. Pharmacol Ther 109:33–41 ArticlePubMedCAS Google Scholar
Kavya R, Saluja R, Singh S, Dikshit M (2006) Nitric oxide synthase regulation and diversity: implications in Parkinson’s disease. Nitric Oxide 15:280–294 ArticlePubMedCAS Google Scholar
Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615 ArticlePubMedCAS Google Scholar
Estevez AG, Spear N, Thompson JA et al (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J Neurosci 18:3708–3714 PubMedCAS Google Scholar
Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8:929–947 ArticlePubMedCAS Google Scholar
Lacza Z, Pankotai E, Csordas A et al (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14:162–168 ArticlePubMedCAS Google Scholar
Carreras MC, Franco MC, Peralta JG, Poderoso JJ (2004) Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 25:125–139 ArticlePubMedCAS Google Scholar
Giulivi C, Kato K, Cooper CE (2006) Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol 291:C1225–C1231 ArticlePubMedCAS Google Scholar
Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363 ArticlePubMedCAS Google Scholar
Eve DJ, Nisbet AP, Kingsbury AE et al (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res Mol Brain Res 63:62–71 ArticlePubMedCAS Google Scholar
Muramatsu Y, Kurosaki R, Watanabe H et al (2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease—an immunocytochemical study. J Neural Transm 110:1129–1144 ArticlePubMedCAS Google Scholar
Chalimoniuk M, Langfort J, Lukacova N, Marsala J (2004) Upregulation of guanylyl cyclase expression and activity in striatum of MPTP-induced parkinsonism in mice. Biochem Biophys Res Commun 324:118–126 ArticlePubMedCAS Google Scholar
Cutillas B, Espejo M, Gil J et al (1999) Caspase inhibition protects nigral neurons against 6-OHDA-induced retrograde degeneration. Neuroreport 10:2605–2608 ArticlePubMedCAS Google Scholar
Schulz JB, Matthews RT, Muqit MM et al (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64:936–939 ArticlePubMedCAS Google Scholar
Hantraye P, Brouillet E, Ferrante R et al (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2:1017–1021 ArticlePubMedCAS Google Scholar
Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44:S110–S114 ArticlePubMedCAS Google Scholar
Kim PK, Zamora R, Petrosko P, Billiar TR (2001) The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 1:1421–1441 ArticlePubMedCAS Google Scholar
Mandir AS, Przedborski S, Jackson-Lewis V et al (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci USA 96:5774–5779 ArticlePubMedCAS Google Scholar
Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW (1999) Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274:34621–34628 ArticlePubMedCAS Google Scholar
Ferrante RJ, Hantraye P, Brouillet E, Beal MF (1999) Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Res 823:177–182 ArticlePubMedCAS Google Scholar
Good PF, Hsu A, Werner P et al (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57:338–342 ArticlePubMedCAS Google Scholar
Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386 ArticlePubMedCAS Google Scholar
Beyer K (2007) Mechanistic aspects of Parkinson’s disease: alpha-synuclein and the biomembrane. Cell Biochem Biophys 47:285–299 ArticlePubMedCAS Google Scholar
Hess DT, Matsumoto A, Nudelman R, Stamler JS (2001) _S_-nitrosylation: spectrum and specificity. Nat Cell Biol 3:E46–E49 ArticlePubMedCAS Google Scholar
Hess DT, Matsumoto A, Kim SO et al (2005) Protein _S_-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166 ArticlePubMedCAS Google Scholar
Uehara T, Nakamura T, Yao D et al (2006) _S_-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517 ArticlePubMedCAS Google Scholar
Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27 ArticlePubMedCAS Google Scholar
Chung KK, Dawson VL, Dawson TM (2005) _S_-nitrosylation in Parkinson’s disease and related neurodegenerative disorders. Methods Enzymol 396:139–150 ArticlePubMedCAS Google Scholar
Chung KK, Thomas B, Li X et al (2004) _S_-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331 ArticlePubMedCAS Google Scholar
Brunori M, Forte E, Arese M et al (2006) Nitric oxide and the respiratory enzyme. Biochim Biophys Acta 1757:1144–1154 ArticlePubMedCAS Google Scholar
Moncada S (2000) Nitric oxide and cell respiration: physiology and pathology. Verh K Acad Geneeskd Belg 62:171–179 discussion 179–181 PubMedCAS Google Scholar
Lopez-Figueroa MO, Caamano C, Morano MI et al (2000) Direct evidence of nitric oxide presence within mitochondria. Biochem Biophys Res Commun 272:129–133 ArticlePubMedCAS Google Scholar
Kanai A, Epperly M, Pearce L et al (2004) Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am J Physiol Heart Circ Physiol 286:H13–H21 ArticlePubMedCAS Google Scholar
Giulivi C (2007) Mitochondria as generators and targets of nitric oxide. Novartis Found Symp 287:92–100 discussion 100–104 ArticlePubMedCAS Google Scholar
Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790 PubMedCAS Google Scholar
He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187–193 ArticlePubMedCAS Google Scholar
Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. Faseb J 17:1954–1956 PubMedCAS Google Scholar
Wilms H, Zecca L, Rosenstiel P et al (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13:1925–1928 ArticlePubMedCAS Google Scholar
Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16:724–739 ArticlePubMedCAS Google Scholar
Mancuso C, Scapagini G, Curro D et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123 ArticlePubMedCAS Google Scholar
Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409 ArticlePubMedCAS Google Scholar
Chen J, Wersinger C, Sidhu A (2003) Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem 278:28089–28100 ArticlePubMedCAS Google Scholar
Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283:537–541 ArticlePubMedCAS Google Scholar
Schulz JB, Beal MF (1995) Neuroprotective effects of free radical scavengers and energy repletion in animal models of neurodegenerative disease. Ann N Y Acad Sci 765:100–110 discussion 116–108 ArticlePubMedCAS Google Scholar
Nanjo F, Honda M, Okushio K et al (1993) Effects of dietary tea catechins on alpha-tocopherol levels, lipid peroxidation, and erythrocyte deformability in rats fed on high palm oil and perilla oil diets. Biol Pharm Bull 16:1156–1159 PubMedCAS Google Scholar
Guo Q, Zhao B, Shen S et al (1999) ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23 PubMedCAS Google Scholar
Haenen GR, Paquay JB, Korthouwer RE, Bast A (1997) Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 236:591–593 ArticlePubMedCAS Google Scholar
Heijnen CG, Haenen GR, van Acker FA et al (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol In Vitro 15:3–6 ArticlePubMedCAS Google Scholar
Paquay JB, Haenen GR, Stender G et al (2000) Protection against nitric oxide toxicity by tea. J Agric Food Chem 48:5768–5772 ArticlePubMedCAS Google Scholar
Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345 ArticlePubMedCAS Google Scholar
Lopez-Lopez G, Moreno L, Cogolludo A et al (2004) Nitric oxide (NO) scavenging and NO protecting effects of quercetin and their biological significance in vascular smooth muscle. Mol Pharmacol 65:851–859 ArticlePubMedCAS Google Scholar
Yokozawa T, Rhyu DY, Cho EJ (2004) ()-Epicatechin 3-_O_-gallate ameliorates the damages related to peroxynitrite production by mechanisms distinct from those of other free radical inhibitors. J Pharm Pharmacol 56:231–239 ArticlePubMedCAS Google Scholar
Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317 ArticlePubMedCAS Google Scholar
Lu KT, Chiou RY, Chen LG et al (2006) Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem 54:3126–3131 ArticlePubMedCAS Google Scholar
Sonmez U, Sonmez A, Erbil G et al (2007) Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett 420:133–137 ArticlePubMedCAS Google Scholar
Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720 ArticlePubMedCAS Google Scholar
Virgili M, Contestabile A (2000) Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 281:123–126 ArticlePubMedCAS Google Scholar
Gong QH, Wang Q, Shi JS et al (2007) Inhibition of caspases and intracellular free Ca2+ concentrations are involved in resveratrol protection against apoptosis in rat primary neuron cultures. Acta Pharmacol Sin 28:1724–1730 ArticlePubMedCAS Google Scholar
Rotilio G, Aquilano K, Ciriolo MR (2003) Interplay of Cu, Zn superoxide dismutase and nitric oxide synthase in neurodegenerative processes. IUBMB Life 55:629–634 ArticlePubMedCAS Google Scholar
Amazzal L, Lapotre A, Quignon F, Bagrel D (2007) Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells. Neurosci Lett 418:159–164 ArticlePubMedCAS Google Scholar
Martinez G, Giuliani A, Leon OS et al (2001) Effect of Mangifera indica L. extract (QF808) on protein and hepatic microsome peroxidation. Phytother Res 15:581–585 ArticlePubMedCAS Google Scholar
Andreu GP, Delgado R, Velho JA et al (2005) Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Eur J Pharmacol 513:47–55 ArticlePubMedCAS Google Scholar
Liu KL, Chen HW, Wang RY et al (2006) DATS reduces LPS-induced iNOS expression, NO production, oxidative stress, and NF-kappaB activation in RAW 264.7 macrophages. J Agric Food Chem 54:3472–3478 ArticlePubMedCAS Google Scholar
Geng Y, Zhang B, Lotz M (1993) Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes. J Immunol 151:6692–6700 PubMedCAS Google Scholar
Kempuraj D, Madhappan B, Christodoulou S et al (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 145:934–944 ArticlePubMedCAS Google Scholar
Wadsworth TL, McDonald TL, Koop DR (2001) Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-alpha. Biochem Pharmacol 62:963–974 ArticlePubMedCAS Google Scholar
Baumann J, Wurm G, von Bruchhausen F (1980) Prostaglandin synthetase inhibition by flavonoids and phenolic compounds in relation to their O2-scavenging properties (author’s transl). Arch Pharm (Weinheim) 313:330–337 ArticleCAS Google Scholar
Liang YC, Huang YT, Tsai SH et al (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952 ArticlePubMedCAS Google Scholar
Pang JL, Ricupero DA, Huang S et al (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Biochem Pharmacol 71:818–826 ArticlePubMedCAS Google Scholar
Cheon BS, Kim YH, Son KS et al (2000) Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med 66:596–600 ArticlePubMedCAS Google Scholar
Chen Y, Yang L, Lee TJ (2000) Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 59:1445–1457 ArticlePubMedCAS Google Scholar
Youdim KA, Joseph JA (2001) A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 30:583–594 ArticlePubMedCAS Google Scholar
Abd El Mohsen MM, Kuhnle G, Rechner AR et al (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33:1693–1702 ArticlePubMedCAS Google Scholar