Effect of Resveratrol on Antioxidant Enzyme Activities in the Brain of Healthy Rat (original) (raw)

References

  1. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nature Med 10(suppl):S18–S25
    PubMed Google Scholar
  2. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial ROS in cell death signalling. Biochimie 84:131–134
    Article PubMed CAS Google Scholar
  3. Gilgun-sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacol 40:959–975
    Article CAS Google Scholar
  4. Bradamante S, Barenghi L, Piccinini F, Bertelli AAE, De Jonge R, Beemster P, De Jong JW (2003) Resveratrol provides late-phase cardioprotection by means of a NO and adenosine-mediated mechanism. Eur J Pharmacol 465:115–123
    Article PubMed CAS Google Scholar
  5. Hsieh TC, Juan GZ, arzynkiewicz ZD, Wu JM (1999) Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21 (WAF1/CIP1), suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 59:2596–2601
    PubMed CAS Google Scholar
  6. Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720
    Article PubMed CAS Google Scholar
  7. Bertelli AAE, Giovannini L, Giannessi D, Migliori M, Bernini W, Fregoni M, Bertelli A (1995) Anti-platelet activity of synthetic and natural resveratrol in red wine. Int J Tiss Reac 17:1–3
    CAS Google Scholar
  8. Belguendouz L, Frémont L, Gozzelino MT (1998) Interaction of transresveratrol with plasma lipoproteins. Biochem Pharmacol 55: 811–816
    Article PubMed CAS Google Scholar
  9. Huang C, Ma WY, Goranson A, Dong Z (1999) Resveratrol suppress cell transformation and induces apoptosis through a P53-dependent pathway. Carcinogenesis 20:237–242
    Article PubMed CAS Google Scholar
  10. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220
    Article PubMed CAS Google Scholar
  11. Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine is an agonist for the oestrogen receptor. Proc Natl Acad Sci USA 94:14138–14143
    Article PubMed CAS Google Scholar
  12. Ray PS, Maulik G, Cordis GA, Bertelli AAE, Bertelli A, Das DK (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia-reperfusion injury. Free Radic Biol Med 27:160–169
    Article PubMed CAS Google Scholar
  13. Hung LM, Su MJ, Chen JK (2004) Resveratrol protects myocardial ischemia-reperfusion injury through both NO-dependent and NO-independent mechanisms. Free Radic Biol Med 36:774–781
    Article PubMed CAS Google Scholar
  14. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013
    Article PubMed CAS Google Scholar
  15. Parker AJ, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Neri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet 37:349–350
    Article PubMed CAS Google Scholar
  16. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-_β_-peptides. J Biol Chem 280:37377–37382
    Article PubMed CAS Google Scholar
  17. Picard F, Kurtev MN, Chung N, Topark-ngarm A, Senawong T, Machado de Oliveira RM, Leid MMW, McBurney MW, Guarente L (2004) SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429:771–776
    Article PubMed CAS Google Scholar
  18. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang UU, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisae lifespan. Nature 425:191–196
    Article PubMed CAS Google Scholar
  19. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431
    Article PubMed CAS Google Scholar
  20. Misra HP, Fridovich I (1972) The role of superoxide anion in autoxidation of epinephrine and a simple assay for SOD. J Biol Chem 247:3170–3175
    PubMed CAS Google Scholar
  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
    PubMed CAS Google Scholar
  22. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–817
    Article Google Scholar
  23. Davis BJ (1964) Disc electrophoresis II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427
    Article PubMed CAS Google Scholar
  24. Reisfeld JC, Lewis UJ, Williams DE (1962) Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195:281–283
    Article PubMed CAS Google Scholar
  25. Beauchamp C, Fridovitch I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
    Article PubMed CAS Google Scholar
  26. Loukhili A, Limam F, Ayadi A, Boyer N, Ouelhazi L (1999) Purification and characterization of a neutral peroxidase induced by rubbing tomato internodes. Physiol Plant 105:24–31
    Article Google Scholar
  27. Lee DL, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L). J Plant Physiol 158:737–745
    Article CAS Google Scholar
  28. Woodburry W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isoenzymes. Anal Biochem 44:301–305
    Article Google Scholar
  29. Ohnishi ST, Barr JK (1978) A simple method of quantitating protein using the biuret and phenol reagent. Anal Biochem 86:193–200
    Article PubMed CAS Google Scholar
  30. Maccarone M, Lorenzon T, Guerrieri P, Finazziagro A (1999) Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenas activity. FEBS J 265:27–33
    Google Scholar
  31. Juan SH, Cheng TH, Lin HC, Chu YL, Lee WS (2005) Mechanism of concentration-dependent induction of heme oxygenase-1 by resveratrol in human aortic smooth muscle cells. Biochem Pharmacol 69:41–48
    Article PubMed CAS Google Scholar
  32. Zhuang H, Kim YS, Koehler RC, Dore S (2003) Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann NY Acad Sci 993:276–286
    Article PubMed CAS Google Scholar
  33. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, Gharbi N, Kamoun A, El-fazaa S (2006) Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol. Alcohol 41:236–239
    CAS Google Scholar
  34. Han YS, Bastianetto S, Dumont Y, Quirion R (2006) Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 318:238–245
    Article PubMed CAS Google Scholar
  35. Juan ME, Vinardel MP, Planas JM (2002) The daily oral administration of high doses of resveratrol to rats for 28 days is not harmful. J Nutr 132:257–260
    PubMed CAS Google Scholar
  36. Peng J, Stevenson FF, Doctrow SR, Andersen JK (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra. J Biol Chem 280:29194–29198
    Article PubMed CAS Google Scholar
  37. Schriner SE, Linford NJ, Martin GM, Trenting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911
    Article PubMed CAS Google Scholar
  38. Ralph GC, Radcliffe PA, Day DM, Mcarthy J, Leroux MA, Lee DCP, Wong LF, Bilsland LG, Greensmith L, Mckingsman S, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med 11:429–433
    Article PubMed CAS Google Scholar
  39. Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from β amyloid neurodegeneration. J Biol Chem 28:41057–41068
    Article CAS Google Scholar
  40. Wang Q, Yu S, Simonyi A, Rottinghaus G, Sun GY, Sun AY (2004) Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res 29:2105–2112
    Article PubMed CAS Google Scholar
  41. Jiang ZG, Maylu XC, Nelson V, Yang X, Pau W, Chen RW, Lebowitz MS, Almassain B, Tortella FC, Brady RO, Ghanbari HA (2006) A multifunctional cytoprotective agent that reduces neurodegeneration after ischemia. Proc Natl Acad Sci USA 103:1581–1586
    Article PubMed CAS Google Scholar
  42. Connor JR (1994) Iron acquisition and expression of iron regulatory proteins in the developing brain: manipulation by ethanol exposure, iron deprivation and cellular dysfunction. Dev Neurosci 16:233–247
    PubMed CAS Google Scholar
  43. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti VS, Franzoso G (2004) ferritin heavy chain upregulation by NF-_κ_B inhibits TNF_α_-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–542
    Article PubMed CAS Google Scholar
  44. Puig S, Askeland E, Thiele DJ (2005) Coordinated remodelling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110
    Article PubMed CAS Google Scholar
  45. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909
    Article PubMed CAS Google Scholar
  46. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits beta amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676
    Article PubMed CAS Google Scholar
  47. Nguyen T, Hamby A, Massa SM (2005) Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci USA 102:11840–11845
    Article PubMed CAS Google Scholar
  48. Ding I, Liu B, Vaught JL, Yamauchi H, Lind SE (2005) Anticancer activity of the antibiotic clioquinol. Cancer Res 65:3389–3395
    Article PubMed CAS Google Scholar

Download references