Bredt, D. S. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res.31, 577–596 (1999). ArticleCASPubMed Google Scholar
Stamler, J. S. et al. _S_-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl Acad. Sci. USA89, 444–448 (1992). The first demonstration of proteinS-nitrosylation, which showed that proteins in several classes could be modified at active-site or allosteric Cys residues by endogenous and exogenous NO. ArticleCASPubMedPubMed Central Google Scholar
Stamler, J. S. et al. _S_-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc. Natl Acad. Sci. USA89, 8087–8091 (1992). ArticleCASPubMedPubMed Central Google Scholar
Stamler, J. S. et al. in Biology of Nitric Oxide (eds, Moncada, S., Marletta, M. A. & Hibbs, J. B. J.) 20–23 (Portland Press, London, UK, 1992). Google Scholar
Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation: the prototypic redox-based signaling mechanism. Cell106, 675–683 (2001). ArticleCASPubMed Google Scholar
Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein _S_-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol.3, 193–197 (2001). Introduced a method to selectively biotinylate sites ofS-nitrosylation within proteins, and applied this method to reveal several endogenous substrates in neural tissue of nNOS-dependentS-nitrosylation. ArticleCASPubMed Google Scholar
Liu, L. et al. Essential roles of _S_-nitrosothiols in vascular homeostasis and endotoxic shock. Cell116, 617–628 (2004). Found that mice with a targeted gene deletion of GSNO reductase have large increases in tissue damage and mortality following endotoxic challenge, which indicated an important role forS-nitrosothiol metabolism in innate immunity, as well as effects on basal SNO levels and vascular tone. ArticleCASPubMed Google Scholar
de Jesus-Berrios, M. et al. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol.13, 1963–1968 (2003). ArticleCASPubMed Google Scholar
Foster, M. W., McMahon, T. J. & Stamler, J. S. _S_-nitrosylation in health and disease. Trends Mol. Med.9, 160–168 (2003). ArticleCASPubMed Google Scholar
Lane, P., Hao, G. & Gross, S. S. _S_-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with _O_-phosphorylation. Sci. STKE, RE1 (2001).
Boehning, D. & Snyder, S. H. Novel neural modulators. Annu. Rev. Neurosci.26, 105–131 (2003). ArticleCASPubMed Google Scholar
Barouch, L. A. et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature416, 337–339 (2002). ArticleCASPubMed Google Scholar
Gow, A. J. et al. Basal and stimulated protein _S_-nitrosylation in multiple cell types and tissues. J. Biol. Chem.277, 9637–9640 (2002). ArticleCASPubMed Google Scholar
Stamler, J. S. & Toone, E. J. The decomposition of thionitrites. Curr. Opin. Chem. Biol.6, 779–785 (2002). ArticleCASPubMed Google Scholar
Bartberger, M. D. et al. S–N dissociation energies of _S_-nitrosothiols: on the origins of nitrosothiol decomposition rates. J. Am. Chem. Soc.123, 8868–8869 (2001). ArticleCASPubMed Google Scholar
Stamler, J. S. _S_-nitrosothiols in the blood: roles, amounts, and methods of analysis. Circ. Res.94, 414–417 (2004). ArticleCASPubMed Google Scholar
Ckless, K. et al. In situ detection and visualization of _S_-nitrosylated proteins following chemical derivatization: identification of Ran GTPase as a target for _S_-nitrosylation. Nitric Oxide11, 216–217 (2004). ArticleCASPubMed Google Scholar
Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science284, 651–654 (1999). Provided the first demonstration of stimulus-coupled protein de-nitrosylation, which was triggered by activation of a membrane receptor that subserves apoptotic stimulation. ArticleCASPubMed Google Scholar
Hoffmann, J., Haendeler, J., Zeiher, A. M. & Dimmeler, S. TNF α and oxLDL reduce protein _S_-nitrosylation in endothelial cells. J. Biol. Chem.276, 41383–41387 (2001). ArticleCASPubMed Google Scholar
Arnelle, D. R. & Stamler, J. S. NO+, NO, and NO− donation by _S_-nitrosothiols: implications for regulation of physiological functions by _S_-nitrosylation and acceleration of disulfide formation. Arch. Biochem. Biophys.318, 279–285 (1995). ArticleCASPubMed Google Scholar
Gow, A. J., Luchsinger, B. P., Pawloski, J. R., Singel, D. J. & Stamler, J. S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl Acad. Sci. USA96, 9027–9032 (1999). ArticleCASPubMedPubMed Central Google Scholar
Romeo, A. A., Capobianco, J. A. & English, A. M. Superoxide dismutase targets NO from GSNO to Cysβ93 of oxyhemoglobin in concentrated but not dilute solutions of the protein. J. Am. Chem. Soc.125, 14370–14378 (2003). ArticleCASPubMed Google Scholar
Mani, K., Cheng, F., Havsmark, B., David, S. & Fransson, L. A. Involvement of glycosylphosphatidylinositol-linked ceruloplasmin in the copper/zinc-nitric oxide-dependent degradation of glypican-1 heparan sulfate in rat C6 glioma cells. J. Biol. Chem.279, 12918–12923 (2004). ArticleCASPubMed Google Scholar
Inoue, K. et al. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J. Biol. Chem.274, 27069–27075 (1999). ArticleCASPubMed Google Scholar
Stubauer, G., Giuffre, A. & Sarti, P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J. Biol. Chem.274, 28128–28133 (1999). ArticleCASPubMed Google Scholar
Tao, L. & English, A. M. Mechanism of _S_-nitrosation of recombinant human brain calbindin D28K. Biochemistry42, 3326–3334 (2003). ArticleCASPubMed Google Scholar
Romeo, A. A., Capobianco, J. A. & English, A. M. Heme nitrosylation of deoxyhemoglobin by _S_-nitrosoglutathione requires copper. J. Biol. Chem.277, 24135–24141 (2002). ArticleCASPubMed Google Scholar
Luchsinger, B. P. et al. Routes to _S_-nitroso-hemoglobin formation with heme redox and preferential reactivity in the β subunits. Proc. Natl Acad. Sci. USA100, 461–466 (2003). ArticleCASPubMedPubMed Central Google Scholar
Foster, M. W. & Stamler, J. S. New insights into protein _S_-nitrosylation: mitochondria as a model system. J. Biol. Chem.279, 25891–25897 (2004). ArticleCASPubMed Google Scholar
Mulsch, A., Mordvintcev, P. I., Vanin, A. F. & Busse, R. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem. Biophys. Res. Commun.196, 1303–1308 (1993). ArticleCASPubMed Google Scholar
Vanin, A. F., Mordvintcev, P. I., Hauschildt, S. & Mulsch, A. The relationship between l-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyl–iron complex formation by activated macrophages. Biochim. Biophys. Acta1177, 37–42 (1993). ArticleCASPubMed Google Scholar
Pawloski, J. R., Hess, D. T. & Stamler, J. S. Export by red blood cells of nitric oxide bioactivity. Nature409, 622–626 (2001). ArticleCASPubMed Google Scholar
Patel, J. M., Zhang, J. & Block, E. R. Nitric oxide-induced inhibition of lung endothelial cell nitric oxide synthase via interaction with allosteric thiols: role of thioredoxin in regulation of catalytic activity. Am. J. Respir. Cell Mol. Biol.15, 410–419 (1996). ArticleCASPubMed Google Scholar
Ravi, K., Brennan, L. A., Levic, S., Ross, P. A. & Black, S. M. _S_-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc. Natl Acad. Sci. USA101, 2619–2624 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kahlos, K., Zhang, J., Block, E. R. & Patel, J. M. Thioredoxin restores nitric oxide-induced inhibition of protein kinase C activity in lung endothelial cells. Mol. Cell. Biochem.254, 47–54 (2003). ArticleCASPubMed Google Scholar
Nikitovic, D. & Holmgren, A. _S_-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem.271, 19180–19185 (1996). ArticleCASPubMed Google Scholar
Gaston, B. et al. Endogenous nitrogen oxides and bronchodilator _S_-nitrosothiols in human airways. Proc. Natl Acad. Sci. USA90, 10957–10961 (1993). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. A metabolic enzyme for _S_-nitrosothiol conserved from bacteria to humans. Nature410, 490–494 (2001). ArticleCASPubMed Google Scholar
Sun, J., Xu, L., Eu, J. P., Stamler, J. S. & Meissner, G. Nitric oxide, NOC-12, and _S_-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in _S_-nitrosylation of the channel. J. Biol. Chem.278, 8184–8189 (2003). ArticleCASPubMed Google Scholar
Hess, D. T., Matsumoto, A., Nudelman, R. & Stamler, J. S. _S_-nitrosylation: spectrum and specificity. Nature Cell Biol.3, E46–E49 (2001). ArticleCASPubMed Google Scholar
Campbell, D. L., Stamler, J. S. & Strauss, H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and _S_-nitrosothiols. J. Gen. Physiol.108, 277–293 (1996). ArticleCASPubMed Google Scholar
Matsumoto, A., Comatas, K. E., Liu, L. & Stamler, J. S. Screening for nitric oxide-dependent protein–protein interactions. Science301, 657–661 (2003). Used yeast two-hybrid screening to showS-nitrosylation-facilitated protein–protein interactions, including interactions of NOS with substrates forS-nitrosylation, which were verified in mammalian cells. ArticleCASPubMed Google Scholar
Matsushita, K. et al. Nitric oxide regulates exocytosis by _S_-nitrosylation of _N_-ethylmaleimide-sensitive factor. Cell115, 139–150 (2003). Showed that the activity of NSF, an essential component of most or all membrane trafficking, is regulatedin situby endogenousS-nitrosylation. ArticleCASPubMedPubMed Central Google Scholar
Stamler, J. S. et al. Blood flow regulation by _S_-nitrosohemoglobin in the physiological oxygen gradient. Science276, 2034–2037 (1997). ArticleCASPubMed Google Scholar
Eu, J. P., Sun, J., Xu, L., Stamler, J. S. & Meissner, G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell102, 499–509 (2000). Showed that Ca2+flux through the ryanodine receptor/Ca2+-release channel of skeletal muscle (RyR1) was activatedin situbyS-nitrosylation of a single regulatory Cys, and thatS-nitrosylation was gated by oxygen-dependent alteration in the redox status of a small additional set of Cys residues. ArticleCASPubMed Google Scholar
Lai, T. S. et al. Calcium regulates _S_-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry40, 4904–4910 (2001). ArticleCASPubMed Google Scholar
Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J. S. _S_-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature380, 221–226 (1996). Showed that haemoglobin isS-nitrosylated endogenously (rather than eliminating nitric oxide) and thereby functions as a source of vasodilatory activity conveyed by red blood cells (which subserves hypoxic vasodilation). ArticleCASPubMed Google Scholar
James, P. E., Lang, D., Tufnell-Barret, T., Milsom, A. B. & Frenneaux, M. P. Vasorelaxation by red blood cells and impairment in diabetes. Reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ. Res.94, 976–983 (2004). ArticleCASPubMed Google Scholar
Funai, E. F., Davidson, A., Seligman, S. P. & Finlay, T. H. _S_-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation. Biochem. Biophys. Res. Commun.239, 875–877 (1997). ArticleCASPubMed Google Scholar
Singel, D. J. & Stamler, J. S. Chemical physiology of blood flow regulation by red blood cells: role of nitric oxide and _S_-nitrosohemoglobin. Annu. Rev. Physiol. Oct 19 2004 (doi:10.1146/annurev.physiol.67.060603.090918).
Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO signals: translocation, regulation, and a consensus motif. Neuron18, 691–696 (1997). ArticleCASPubMed Google Scholar
Britto, P. J., Knipling, L. & Wolff, J. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem.277, 29018–29027 (2002). ArticleCASPubMed Google Scholar
Bizzozero, O. A., Bixler, H. A. & Pastuszyn, A. Structural determinants influencing the reaction of cysteine-containing peptides with palmitoyl-coenzyme A and other thioesters. Biochim. Biophys. Acta1545, 278–288 (2001). ArticleCASPubMed Google Scholar
Atkins, W. M., Wang, R. W., Bird, A. W., Newton, D. J. & Lu, A. Y. The catalytic mechanism of glutathione _S_-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat α1-1 GST. J. Biol. Chem.268, 19188–19191 (1993). ArticleCASPubMed Google Scholar
Pérez-Mato, I., Castro, C., Ruiz, F. A., Corrales, F. J. & Mato, J. M. Methionine adenosyltransferase _S_-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J. Biol. Chem.274, 17075–17079 (1999). Showed with site-specific mutation the important role of acidic and basic side chains, proximate to Cys thiol, in targetingS-nitrosylation within protein substrates (transnitrosylation by GSNO). ArticlePubMed Google Scholar
Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell84, 757–767 (1996). ArticleCASPubMed Google Scholar
Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science269, 1737–1740 (1995). ArticleCASPubMed Google Scholar
Lipton, S. A. et al. Cysteine regulation of protein function — as exemplified by NMDA-receptor modulation. Trends Neurosci.25, 474–480 (2002). ArticleCASPubMed Google Scholar
Fang, M. et al. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron28, 183–193 (2000). ArticleCASPubMed Google Scholar
Rizzo, M. A. & Piston, D. W. Regulation of β cell glucokinase by _S_-nitrosylation and association with nitric oxide synthase. J. Cell Biol.161, 243–248 (2003). Showed that glucokinase is bound to nNOS in pancreatic β-cells, and that physiological activation of nNOS by insulin results inS-nitrosylation of glucokinase, its release from nNOS and activation of kinase activity. ArticleCASPubMedPubMed Central Google Scholar
Giles, N. M., Giles, G. I. & Jacob, C. Multiple roles of cysteine in biocatalysis. Biochem. Biophys. Res. Commun.300, 1–4 (2003). ArticleCASPubMed Google Scholar
Stamler, J. S., Singel, D. J. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science258, 1898–1902 (1992). ArticleCASPubMed Google Scholar
Kim, J. E. & Tannenbaum, S. R. _S_-nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J. Biol. Chem.279, 9758–9764 (2004). ArticleCASPubMed Google Scholar
Caselli, A., Chiarugi, P., Camici, G., Manao, G. & Ramponi, G. In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide. FEBS Lett.374, 249–252 (1995). ArticleCASPubMed Google Scholar
Callsen, D., Sandau, K. B. & Brune, B. Nitric oxide and superoxide inhibit platelet-derived growth factor receptor phosphotyrosine phosphatases. Free Radic. Biol. Med.26, 1544–1553 (1999). ArticleCASPubMed Google Scholar
Xian, M. et al. Inhibition of protein tyrosine phosphatases by low-molecular-weight _S_-nitrosothiols and _S_-nitrosylated human serum albumin. Biochem. Biophys. Res. Commun.268, 310–314 (2000). ArticleCASPubMed Google Scholar
Li, S. & Whorton, A. R. Regulation of protein tyrosine phosphatase 1B in intact cells by _S_-nitrosothiols. Arch. Biochem. Biophys.410, 269–279 (2003). ArticleCASPubMed Google Scholar
Mikkelsen, R. B. & Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene22, 5734–5754 (2003). ArticleCASPubMed Google Scholar
Leiper, J., Murray-Rust, J., McDonald, N. & Vallance, P. _S_-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc. Natl Acad. Sci. USA99, 13527–13532 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hao, G., Xie, L. & Gross, S. S. Argininosuccinate synthetase is reversibly inactivated by _S_-nitrosylation in vitro and in vivo. J. Biol. Chem.279, 36192–36200 (2004). ArticleCASPubMed Google Scholar
Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E. & Ignarro, L. J. Nitric oxide inhibits ornithine decarboxylase via _S_-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem.276, 34458–34464 (2001). ArticleCASPubMed Google Scholar
Hillary, R. A. & Pegg, A. E. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochim. Biophys. Acta1647, 161–166 (2003). ArticleCASPubMed Google Scholar
Haendeler, J. et al. Redox regulatory and anti-apoptotic functions of thioredoxin depend on _S_-nitrosylation at cysteine 69. Nature Cell Biol.4, 743–749 (2002). ArticleCASPubMed Google Scholar
Sumbayev, V. V. _S_-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch. Biochem. Biophys.415, 133–136 (2003). ArticleCASPubMed Google Scholar
Park, H. S. et al. Inhibition of apoptosis signal-regulating kinase 1 (ASK1) by nitric oxide through a thiol-redox mechanism. J. Biol. Chem.279, 7584–7590 (2003). ArticlePubMedCAS Google Scholar
Park, H. S., Huh, S. H., Kim, M. S., Lee, S. H. & Choi, E. J. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc. Natl Acad. Sci. USA97, 14382–14387 (2000). Showed in intact cells that endogenously produced NO can suppress activity of a protein kinase, JNK, which could be ascribed toS-nitrosylation of a single regulatory cysteine. ArticleCASPubMedPubMed Central Google Scholar
Lander, H. M., Ogiste, J. S., Pearce, S. F., Levi, R. & Novogrodsky, A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J. Biol. Chem.270, 7017–7020 (1995). ArticleCASPubMed Google Scholar
dela Torre, A., Schroeder, R. A., Bartlett, S. T. & Kuo, P. C. Differential effects of nitric oxide-mediated _S_-nitrosylation on p50 and c-jun DNA binding. Surgery124, 137–141 (1998). ArticleCAS Google Scholar
Nikitovic, D., Holmgren, A. & Spyrou, G. Inhibition of AP-1 DNA binding by nitric oxide involving conserved cysteine residues in Jun and Fos. Biochem. Biophys. Res. Commun.242, 109–112 (1998). ArticleCASPubMed Google Scholar
Monteiro, H. P., Gruia-Gray, J., Peranovich, T. M., de Oliveira, L. C. & Stern, A. Nitric oxide stimulates tyrosine phosphorylation of focal adhesion kinase, Src kinase, and mitogen-activated protein kinases in murine fibroblasts. Free Radic. Biol. Med.28, 174–182 (2000). ArticleCASPubMed Google Scholar
Akhand, A. A. et al. Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J. Biol. Chem.274, 25821–25826 (1999). ArticleCASPubMed Google Scholar
Yun, H. Y., Gonzalez-Zulueta, M., Dawson, V. L. & Dawson, T. M. Nitric oxide mediates _N_-methyl-D-aspartate receptor-induced activation of p21ras. Proc. Natl Acad. Sci. USA95, 5773–5778 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, Y. F., Raab-Graham, K., Jan, Y. N. & Jan, L. Y. NO stimulation of ATP-sensitive potassium channels: involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. Proc. Natl Acad. Sci. USA101, 7799–7804 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jaffrey, S. R., Fang, M. & Snyder, S. H. Nitrosopeptide mapping: a novel methodology reveals _S_-nitrosylation of dexras1 on a single cysteine residue. Chem. Biol.9, 1329–1335 (2002). ArticleCASPubMed Google Scholar
Estrada, C. et al. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase. Biochem. J.326, 369–376 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nozik-Grayck, E. et al. Pulmonary vasoconstriction by serotonin is inhibited by _S_-nitrosoglutathione. Am. J. Physiol. Lung Cell. Mol. Physiol.282, L1057–L1065 (2002). ArticleCASPubMed Google Scholar
Lipton, S. A. et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature364, 626–632 (1993). ArticleCASPubMed Google Scholar
Choi, Y. B. et al. Molecular basis of NMDA receptor-coupled ion channel modulation by _S_-nitrosylation. Nature Neurosci.3, 15–21 (2000). ArticleCASPubMed Google Scholar
Sun, J., Xin, C., Eu, J. P., Stamler, J. S. & Meissner, G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl Acad. Sci. USA98, 11158–11162 (2001). ArticleCASPubMedPubMed Central Google Scholar
Eu, J. P. et al. Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide. Proc. Natl Acad. Sci. USA100, 15229–15234 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aracena, P., Sanchez, G., Donoso, P., Hamilton, S. L. & Hidalgo, C. _S_-glutathionylation decreases Mg2+ inhibition and _S_-nitrosylation enhances Ca2+ activation of RyR1 channels. J. Biol. Chem.278, 42927–42935 (2003). ArticleCASPubMed Google Scholar
Sun, J., Xu, L., Eu, J. P., Stamler, J. S. & Meissner, G. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J. Biol. Chem.276, 15625–15630 (2001). ArticleCASPubMed Google Scholar
Zable, A. C., Favero, T. G. & Abramson, J. J. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J. Biol. Chem.272, 7069–7077 (1997). ArticleCASPubMed Google Scholar
Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-_S_-nitrosylation. Science279, 234–237 (1998). ArticleCASPubMed Google Scholar
Xu, K. Y., Huso, D. L., Dawson, T. M., Bredt, D. S. & Becker, L. C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA96, 657–662 (1999). ArticleCASPubMedPubMed Central Google Scholar
Broillet, M. C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron16, 377–385 (1996). ArticleCASPubMed Google Scholar
Broillet, M. C. A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J. Biol. Chem.275, 15135–15141 (2000). ArticleCASPubMed Google Scholar
Gao, C. et al. _S_-nitrosylation of heterogeneous nuclear ribonucleoprotein A/B regulates osteopontin transcription in endotoxin-stimulated murine macrophages. J. Biol. Chem.279, 11236–11243 (2004). ArticleCASPubMed Google Scholar
Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med.182, 1683–1693 (1995). ArticleCASPubMed Google Scholar
Palmer, L. A., Semenza, G. L., Stoler, M. H. & Johns, R. A. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am. J. Physiol.274, L212–L219 (1998). CASPubMed Google Scholar
Ambs, S., Hussain, S. P. & Harris, C. C. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J.11, 443–448 (1997). ArticleCASPubMed Google Scholar
Davis, M. E., Grumbach, I. M., Fukai, T., Cutchins, A. & Harrison, D. G. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor κB binding. J. Biol. Chem.279, 163–168 (2004). ArticleCASPubMed Google Scholar
Lowenstein, C. J. et al. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon γ and lipopolysaccharide. Proc. Natl Acad. Sci. USA90, 9730–9734 (1993). ArticleCASPubMedPubMed Central Google Scholar
Xie, Q. W., Kashiwabara, Y. & Nathan, C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem.269, 4705–4708 (1994). ArticleCASPubMed Google Scholar
Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J. & Stamler, J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell86, 719–729 (1996). ArticleCASPubMed Google Scholar
Kullik, I., Toledano, M. B., Tartaglia, L. A. & Storz, G. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J. Bacteriol.177. 1275–1284 (1995) ArticleCASPubMedPubMed Central Google Scholar
Kim, S. O. et al. OxyR: a molecular code for redox-related signaling. Cell109, 383–396 (2002). Showed that a single regulatory Cys within the bacterial transcription factor OxyR is subject not only toS-nitrosylation but also to additional NO-dependent and NO-independent oxidative modifications, with differential effects on DNA binding and transcriptional response. ArticleCASPubMed Google Scholar
Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med.9, 677–684 (2003). ArticleCASPubMed Google Scholar
Sumbayev, V. V., Budde, A., Zhou, J. & Brune, B. HIF- 1α protein as a target for _S_-nitrosation. FEBS Lett.535, 106–112 (2003). ArticleCASPubMed Google Scholar
Yasinska, I. M. & Sumbayev, V. V. _S_-nitrosation of Cys-800 of HIF-1α protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett.549, 105–109 (2003). ArticleCASPubMed Google Scholar
Palmer, L. A., Gaston, B. & Johns, R. A. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol. Pharmacol.58, 1197–1203 (2000). Provided an initial demonstration, with HIF1, that NO could control the activity of transcription factors by regulating their stabiltity (ubiquitylation and proteasomal degradation). ArticleCASPubMed Google Scholar
Sandau, K. B., Fandrey, J. & Brune, B. Accumulation of HIF-1α under the influence of nitric oxide. Blood97, 1009–1015 (2001). ArticleCASPubMed Google Scholar
Metzen, E., Zhou, J., Jelkmann, W., Fandrey, J. & Brune, B. Nitric oxide impairs normoxic degradation of HIF-1α by inhibition of prolyl hydroxylases. Mol. Biol. Cell14, 3470–3481 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yao, D. et al. Nitrosative stress linked to sporadic Parkinson's disease: _S_-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA101, 10810–10814 (2004). Showed, together with reference 117, that the activity of the neuronal E3 ubiquitin ligase parkin is regulated byS-nitrosylationin situas a result of nitrosative stress induced experimentally or occuring endogenously in the brains of Parkinson's disease patients. ArticleCASPubMedPubMed Central Google Scholar
Chung, K. K. K. et al. _S_-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science304, 1328–1331 (2004). ArticleCASPubMed Google Scholar
Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. Semin. Cancer Biol.13, 49–58 (2003). ArticleCASPubMed Google Scholar
Calmels, S., Hainaut, P. & Ohshima, H. Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res.57, 3365–3369 (1997). CASPubMed Google Scholar
Brune, B., von Knethen, A. & Sandau, K. B. Transcription factors p53 and HIF-1α as targets of nitric oxide. Cell. Signal.13, 525–533 (2001). ArticleCASPubMed Google Scholar
Schonhoff, C. M., Daou, M. C., Jones, S. N., Schiffer, C. A. & Ross, A. H. Nitric oxide-mediated inhibition of Hdm2–p53 binding. Biochemistry41, 13570–13574 (2002). ArticleCASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NFκB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCASPubMed Google Scholar
dela Torre, A., Schroeder, R. A., Punzalan, C. & Kuo, P. C. Endotoxin-mediated _S_-nitrosylation of p50 alters NF-κB-dependent gene transcription in ANA-1 murine macrophages. J. Immunol.162, 4101–4108 (1999). CAS Google Scholar
Park, S. K., Lin, H. L. & Murphy, S. Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-κB binding to DNA. Biochem. J.322, 609–613 (1997). ArticleCASPubMedPubMed Central Google Scholar
dela Torre, A., Schroeder, R. A. & Kuo, P. C. Alteration of NF-κB p50 DNA binding kinetics by _S_-nitrosylation. Biochem. Biophys. Res. Commun.238, 703–706 (1997). ArticleCAS Google Scholar
Matthews, J. R., Botting, C. H., Panico, M., Morris, H. R. & Hay, R. T. Inhibition of NF-κB DNA binding by nitric oxide. Nucleic Acids Res.24, 2236–2242 (1996). ArticleCASPubMedPubMed Central Google Scholar
Marshall, H. E. & Stamler, J. S. Inhibition of NF-κB by _S_-nitrosylation. Biochemistry40, 1688–1693 (2001). ArticleCASPubMed Google Scholar
Peng, H. B., Libby, P. & Liao, J. K. Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB. J. Biol. Chem.270, 14214–14219 (1995). ArticleCASPubMed Google Scholar
Marshall, H. E. & Stamler, J. S. Nitrosative stress-induced apoptosis through inhibition of NF-κB. J. Biol. Chem.277, 34223–34228 (2002). ArticleCASPubMed Google Scholar
Reynaert, N. L. et al. Nitric oxide represses inhibitory κB kinase through _S_-nitrosylation. Proc. Natl Acad. Sci. USA101, 8945–8950 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pantopoulos, K. & Hentze, M. W. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc. Natl Acad. Sci. USA92, 1267–1271 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. & Ponka, P. Effects of interferon-γ and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J. Biol. Chem.275, 6220–6226 (2000). ArticleCASPubMed Google Scholar
Bouton, C., Oliveira, L. & Drapier, J. C. Converse modulation of IRP1 and IRP2 by immunological stimuli in murine RAW 264.7 macrophages. J. Biol. Chem.273, 9403–9408 (1998). ArticleCASPubMed Google Scholar
Kim, S., Wing, S. S. & Ponka, P. _S_-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway. Mol. Cell. Biol.24, 330–337 (2004). ArticleCASPubMedPubMed Central Google Scholar
LaVaute, T. et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nature Genet.27, 209–214 (2001). ArticleCASPubMed Google Scholar
Jaffrey, S. R., Cohen, N. A., Rouault, T. A., Klausner, R. D. & Snyder, S. H. The iron-responsive element binding protein: a target for synaptic actions of nitric oxide. Proc. Natl Acad. Sci. USA91, 12994–12998 (1994). ArticleCASPubMedPubMed Central Google Scholar
Dudev, T. & Lim, C. Factors governing the protonation state of cysteines in proteins: an Ab initio/CDM study. J. Am. Chem. Soc.124, 6759–6766 (2002). ArticleCASPubMed Google Scholar
Kroncke, K. D., Klotz, L. O., Suschek, C. V. & Sies, H. Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. J. Biol. Chem.277, 13294–13301 (2002). ArticleCASPubMed Google Scholar
Pearce, L. L. et al. Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc. Natl Acad. Sci. USA97, 477–482 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron41, 351–365 (2004). ArticleCASPubMed Google Scholar
Gu, Z. et al. _S_-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science297, 1186–1190 (2002). ArticleCASPubMed Google Scholar
Zhang, Z. et al. Activation of tumor necrosis factor-α-converting enzyme-mediated ectodomain shedding by nitric oxide. J. Biol. Chem.275, 15839–15844 (2000). ArticleCASPubMed Google Scholar
Datta, B. et al. Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure. Circulation109, 1339–1342 (2004). ArticleCASPubMed Google Scholar
Massy, Z. A. et al. Increased plasma _S_-nitrosothiol concentrations predict cardiovascular outcomes among patients with end-stage renal disease: a prospective study. J. Am. Soc. Nephrol.15, 470–476 (2004). ArticleCASPubMed Google Scholar
Gow, A. J., Buerk, D. G. & Ischiropoulos, H. A novel reaction mechanism for the formation of _S_-nitrosothiol in vivo. J. Biol. Chem.272, 2841–2845 (1997). ArticleCASPubMed Google Scholar
Houk, K. N. et al. Nitroxyl disulfides, novel intermediates in transnitrosation reactions. J. Am. Chem. Soc.125, 6972–6976 (2003). ArticleCASPubMed Google Scholar
Bartberger, M. D. et al. Theory, spectroscopy, and crystallographic analysis of _S_-nitrosothiols: conformational distribution dictates spectroscopic behavior. J. Am. Chem. Soc.122, 5889–5890 (2000). ArticleCAS Google Scholar
Chan, N. L., Kavanaugh, J. S., Rogers, P. H. & Arnone, A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry43, 118–132 (2004). ArticleCASPubMed Google Scholar
Liu, X., Miller, M. J., Joshi, M. S., Thomas, D. D. & Lancaster, J. R. Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl Acad. Sci. USA95, 2175–2179 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nedospasov, A., Rafikov, R., Beda, N. & Nudler, E. An autocatalytic mechanism of protein nitrosylation. Proc. Natl Acad. Sci. USA97, 13543–13548 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jourd'heuil, D., Jourd'heuil, F. L. & Feelisch, M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J. Biol. Chem.278, 15720–15726 (2003). ArticleCASPubMed Google Scholar
Liu, L. et al. Inactivation of annexin II tetramer by _S_-nitrosoglutathione. Eur. J. Biochem.269, 4277–4286 (2002). ArticleCASPubMed Google Scholar
Ji, Y., Toader, V. & Bennett, B. M. Regulation of microsomal and cytosolic glutathione _S_-transferase activities by _S_-nitrosylation. Biochem. Pharmacol.63, 1397–1404 (2002). ArticleCASPubMed Google Scholar
Ventura, A. & Pelicci, P. G. Semaphorins: green light for redox signaling? Sci. STKE2002, PE44 (2002). ArticlePubMed Google Scholar