- Thomas LV, Ockhuizen T. New insights into the impact of the intestinal microbiota on health and disease: a symposium report. Br J Nutr. 2012;107(S1):S1–13.
Article CAS PubMed Google Scholar
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.
Article Google Scholar
- Yang Y, Wang X, Huycke T, Moore DR, Lightfoot SA, Huycke MM. Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Transl Oncol. 2013;6(5):596. This study demonstrates that specific human commensals can polarize macrophages to the M1 phenotype, which then serve as effectors for bacterially induced bystander effects. The authors propose targeting M1 macrophages as a chemopreventive strategy.
- Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C, et al. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol. 2014;20(4):908–22.
Article CAS PubMed Central PubMed Google Scholar
- Jobin C. Colorectal cancer: looking for answers in the microbiota. Cancer Discov. 2013;3(4):384–7.
Article CAS PubMed Central PubMed Google Scholar
- Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12.
Article CAS PubMed Central PubMed Google Scholar
- Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.
Article CAS PubMed Google Scholar
- Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6(5):e20447. This study profiles the colon tumor microbiome in contrast to non-malignant colon mucosa revealing differing microbial colonization patterns between the two sites.
- Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6(1):e16393.
Article CAS PubMed Central PubMed Google Scholar
- Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013;8(8):e70803.
Article CAS PubMed Central PubMed Google Scholar
- Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. AmBio. 2013;4(6):e00692–13. This study demonstrates the important role of the microbiome in CRC development using fecal transplants from tumor-bearing mice to conventionalize germ-free animals, which resulted in an increased number of inflammation-induced tumors.
Google Scholar
- Zhan Y, Chen P-J, Sadler WD, Wang F, Poe S, Núñez G, et al. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013;73(24):7199–210.
Article CAS PubMed Google Scholar
- Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-derived nitrate boosts growth of E coli in the inflamed gut. Science. 2013;339(6120):708–11.
Article CAS PubMed Central PubMed Google Scholar
- Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol. 2012;30:149.
Article CAS PubMed Central PubMed Google Scholar
- Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.
Article CAS PubMed Central PubMed Google Scholar
- Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82. This study proposes the “driver and passenger” hypothesis of bacterially induced tumor formation and progression.
- Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–8.
CAS PubMed Central PubMed Google Scholar
- Pimentel-Nunes P, Teixeira AL, Pereira C, Gomes M, Brandão C, Rodrigues C, et al. Functional polymorphisms of Toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in Europeans. Dig Liver Dis. 2013;45(1):63–9.
Article CAS PubMed Google Scholar
- Richmond A. NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2(9):664–74.
Article CAS PubMed Central PubMed Google Scholar
- Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152(1):25–38. This article demonstrates the role of inflammation and outlines signaling pathways involved in the bidirectional conversion of tumor-initiating stem cells and nonstem cells.
Article CAS PubMed Google Scholar
- Zubair A, Frieri M. Role of nuclear factor-ĸB in breast and colorectal cancer. Curr Allergy Asthma Rep. 2013;13(1):44–9.
Article CAS PubMed Google Scholar
- Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K, et al. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Investig. 2013;123(4):1428.
Article CAS PubMed Central PubMed Google Scholar
- Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Investig. 2013;123(2):700.
CAS PubMed Central PubMed Google Scholar
- Shanahan MT, Carroll IM, Grossniklaus E, White A, von Furstenberg RJ, Barner R, et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut. 2014;63(6):903–10.
Article CAS PubMed Central PubMed Google Scholar
- Nagi RS, Bhat AS, Kumar H. Cancer: a tale of aberrant PRR response. Front Immunol. 2014;5:161.
Article PubMed Central PubMed Google Scholar
- Pradere J, Dapito D, Schwabe R. The yin and yang of Toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95.
Article CAS PubMed Google Scholar
- Collins D, Hogan AM, Winter DC. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011;12(5):504–12.
Article CAS PubMed Google Scholar
- Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 2013;8(2):e56964.
Article CAS PubMed Central PubMed Google Scholar
- Goodwin AC, Shields CED, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108(37):15354–9.
Article CAS PubMed Central PubMed Google Scholar
- Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.
Article CAS PubMed Central PubMed Google Scholar
- Bongers G, Pacer ME, Geraldino TH, Chen L, He Z, Hashimoto D, et al. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. J Exp Med. 2014;211(3):457–72.
Article CAS PubMed Google Scholar
- Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.
Article CAS PubMed Central PubMed Google Scholar
- Geng J, Fan H, Tang X, Zhai H, Zhang Z. Diversified pattern of the human colorectal cancer microbiome. Gut Pathog. 2013. doi:10.1186/1757-4749-5-2.
PubMed Central PubMed Google Scholar
- Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, Bruha J, Neary P, Dezeeuw N, Tommasino M. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33(8):1381-90. doi:10.1007/s10096-014-2081-3.
- Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.
Article CAS PubMed Central PubMed Google Scholar
- Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420–8.
Article CAS PubMed Google Scholar
- Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11. This is the largest comparative study of human stool samples from CRC patients and control subjects and was the first to show decreased microbial community diversity in stool.
Article CAS PubMed Google Scholar
- Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology. 1998;115(3):642–8.
Article CAS PubMed Google Scholar
- Osaki T, Matsuki T, Asahara T, Zaman C, Hanawa T, Yonezawa H, et al. Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog. 2012;53(1):12–8.
Article PubMed Google Scholar
- Zaman C, Osaki T, Hanawa T, Yonezawa H, Kurata S, Kamiya S. Analysis of the microbial ecology between Helicobacter pylori and the gastric microbiota of Mongolian gerbils. J Med Microbiol. 2014;63(Pt 1):129–37.
Article CAS PubMed Google Scholar
- Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep. 2014. doi:10.1038/srep04202. As a comprehensive study of microbiota changes in gastric cancer patients, as compared with healthy controls, this study indicates that other microbes are involved in gastric cancer development.
PubMed Central PubMed Google Scholar
- Dicksved J, Lindberg M, Rosenquist M, Enroth H, Jansson JK, Engstrand L. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol. 2009;58(4):509–16.
Article CAS PubMed Google Scholar
- Shin CM, Kim N, Lee HS, Park JH, Ahn S, Kang GH, et al. Changes in aberrant DNA methylation after Helicobacter pylori eradication: a long‐term follow‐up study. Int J Cancer. 2013;133(9):2034–42. This study indicates that the eradication of H. pylori, a treatment thought to be effective in reducing the risk of gastric cancer, is not successful in limiting long-term development of gastric cancer. Changes in methylation provide a mechanism for this phenomenon.
Article CAS PubMed Google Scholar
- Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology. 2005;128(7):1937–52.
Article CAS PubMed Google Scholar
- Wang TC, Goldenring JR, Dangler C, Ito S, Mueller A, Jeon WK, et al. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology. 1998;114(4):675–69.
Article CAS PubMed Google Scholar
- Moen EL, Wen S, Anwar T, Cross-Knorr S, Brilliant K, Birnbaum F, et al. Regulation of RKIP function by Helicobacter pylori in gastric cancer. PLoS One. 2012;7(5):e37819.
Article CAS PubMed Central PubMed Google Scholar
- Yang L, Chaudhary N, Baghdadi J, Pei Z. Microbiome in reflux disorders and esophageal adenocarcinoma. Cancer J. 2014;20(3):207–10.
Article CAS PubMed Google Scholar
- Anderson LA, Murphy SJ, Johnston BT, Watson R, Ferguson H, Bamford KB, et al. Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case–control study. Gut. 2008;57(6):734–9.
Article CAS PubMed Google Scholar
- Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137(2):588–97.
Article PubMed Central PubMed Google Scholar
- Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95(7):569–74.
Article CAS PubMed Google Scholar
- Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8. This study indicates that changes of the oral microbiota may be useful biomarkers in the detection of pancreatic cancer. It provides an illustration of microbial changes between cancer patients and healthy controls, indicating species that are relevant to the development of pancreatic cancer.
Article CAS PubMed Central PubMed Google Scholar
- Gong H-L, Shi Y, Zhou L, Wu C-P, Cao P-Y, Tao L, et al. The composition of microbiome in larynx and the throat biodiversity between laryngeal squamous cell carcinoma patients and control population. PLoS One. 2013;8(6):e66476. This study provides a comprehensive depiction of microbial changes between cancer patients and healthy controls, implicating H. pylori and a number of other species in the development of laryngeal carcinoma.
Article CAS PubMed Central PubMed Google Scholar
- Sharma V, Chauhan VS, Nath G, Kumar A, Shukla VK. Role of bile bacteria in gallbladder carcinoma. Hepatogastroenterology. 2007;54(78):1622.
CAS PubMed Google Scholar
- Shukla V, Tiwari S, Roy S. Biliary bile acids in cholelithiasis and carcinoma of the gall bladder. Eur J Cancer Prev. 1993;2(2):155–60.
Article CAS PubMed Google Scholar
- Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.
Article CAS PubMed Google Scholar
- Mitrani-Rosenbaum S, Tsvieli R, Tur-Kaspa R. Oestrogen stimulates differential transcription of human papillomavirus type 16 in SiHa cervical carcinoma cells. J Gen Virol. 1989;70(8):2227–32.
Article CAS PubMed Google Scholar
- Riley RR, Duensing S, Brake T, Münger K, Lambert PF, Arbeit JM. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003;63(16):4862–71.
CAS PubMed Google Scholar
- Chung S-H, Wiedmeyer K, Shai A, Korach KS, Lambert PF. Requirement for estrogen receptor α in a mouse model for human papillomavirus–associated cervical cancer. Cancer Res. 2008;68(23):9928–34.
Article CAS PubMed Central PubMed Google Scholar
- Elson DA, Riley RR, Lacey A, Thordarson G, Talamantes FJ, Arbeit JM. Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res. 2000;60(5):1267–75.
CAS PubMed Google Scholar
- Lombardi P, Goldin B, Boutin E, Gorbach SL. Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem. 1978;9(8):795–801.
Article CAS PubMed Google Scholar
- D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–56.
Article PubMed Google Scholar
- Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.
Article CAS PubMed Central PubMed Google Scholar
- Nugent JL, McCoy AN, Addamo CJ, Jia W, Sandler RS, Keku TO. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J Proteome Res. 2014;13(4):1921–9.
Article CAS PubMed Google Scholar
- Forsythe P, Bienenstock J. Immunomodulation by commensal and probiotic bacteria. Immunol Investig. 2010;39(4–5):429–48.
Article CAS Google Scholar
- Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014. doi:10.1073/pnas.1322269111.
Google Scholar
- Akare S, Jean‐Louis S, Chen W, Wood DJ, Powell AA, Martinez JD. Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence. Int J Cancer. 2006;119(12):2958–69.
Article CAS PubMed Google Scholar
- Miao XP, Ouyang Q, Li HY, Zhao ZQ, Pan Y, Wang ZW. Ursodeoxycholic acid for the prevention of colorectal adenomas and carcinomas. Cochrane Database Syst Rev. 2008;4:CD007377. doi:10.1002/14651858.CD007377.
Google Scholar
- Eaton JE, Silveira MG, Pardi DS, Sinakos E, Kowdley KV, Luketic VA, et al. High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol. 2011;106(9):1638–45.
Article CAS PubMed Central PubMed Google Scholar
- Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014;12(1):164.
Article PubMed Central PubMed Google Scholar
- Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.
Article CAS PubMed Google Scholar
- David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.
Article CAS PubMed Central PubMed Google Scholar
- Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53.
Article CAS PubMed Google Scholar
- Deuschle U, Schüler J, Schulz A, Schlüter T, Kinzel O, Abel U, et al. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS One. 2012;7(10):e43044.
Article CAS PubMed Central PubMed Google Scholar
- Inagaki T, Moschetta A, Lee Y-K, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–5.
Article CAS PubMed Central PubMed Google Scholar
- Adlercreutz H, Martin F, Pulkkinen M, Dencker H, Rimer U, Sjoberg N-O, et al. Intestinal metabolism of estrogens 1. J Clin Endocrinol Metab. 1976;43(3):497–505.
Article CAS PubMed Google Scholar
- Woolcott CG, Shvetsov YB, Stanczyk FZ, Wilkens LR, White KK, Caberto C, et al. Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the Multiethnic Cohort Study. Endocr Relat Cancer. 2010;17(1):125–34.
Article CAS PubMed Central PubMed Google Scholar
- Mackenzie I. The production of mammary cancer in rats using oestrogens. Br J Cancer. 1955;9(2):284.
Article CAS PubMed Central PubMed Google Scholar
- Hill M, Goddard P, Williams R. Gut bacteria and aetiology of cancer of the breast. Lancet. 1971;298(7722):472–3.
Article Google Scholar
- Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schünemann HJ, et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 2: 16α-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000;11(6):635–40.
Article CAS PubMed Google Scholar
- Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98(1):111–20.
Article CAS PubMed Central PubMed Google Scholar
- Xie G, Zhang S, Zheng X, Jia W. Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes. Electrophoresis. 2013;34(19):2787–98.
CAS PubMed Google Scholar
- Stecher B, Maier L, Hardt W-D. 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol. 2013;11(4):277–84.
Article CAS PubMed Google Scholar
- O'Keefe SJ, Chung D, Mahmoud N, Sepulveda AR, Manafe M, Arch J, et al. Why do African Americans get more colon cancer than Native Africans? J Nutr. 2007;137(1):175S–82S.
PubMed Google Scholar
- Keszei AP, Goldbohm RA, Schouten LJ, Jakszyn P, van den Brandt PA. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am J Clin Nutr. 2013;97(1):135–46.
Article CAS PubMed Google Scholar
- Giacosa A, Barale R, Bavaresco L, Gatenby P, Gerbi V, Janssens J, et al. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. 2013;22(1):90–5.
Article CAS PubMed Google Scholar
- Vipperla K, Ou J, Wahl E, Ruder E, O'Keefe S. A 14-day in-house dietary modification of a ‘Western’ diet to an ‘African’ diet changes the microbiota, its metabolome, and biomarkers of colon cancer risk (825.5). FASEB J. 2014;28(1 Suppl):825.
Google Scholar
- Song Y, Garg S, Girotra M, Maddox C, von Rosenvinge EC, Dutta A, et al. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS One. 2013;8(11):e81330.
Article PubMed Central PubMed Google Scholar
- Marzotto M, Maffeis C, Paternoster T, Ferrario R, Rizzotti L, Pellegrino M, et al. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Res Microbiol. 2006;157(9):857–66.
Article CAS PubMed Google Scholar
- Matsumoto M, Aranami A, Ishige A, Watanabe K, Benno Y. LKM512 yogurt consumption improves the intestinal environment and induces the T‐helper type 1 cytokine in adult patients with intractable atopic dermatitis. Clin Exp Allergy. 2007;37(3):358–70.
Article CAS PubMed Google Scholar
- Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014. doi:10.1136/gutjnl-2013-306541.
Google Scholar