Koch, R. in Tenth International Congress of Medicine 1 (August Hirschwald, Berlin, 1891). Google Scholar
Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet357, 539–545 (2001). ArticleCASPubMed Google Scholar
Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol.30, 677–706 (2012). ArticleCASPubMed Google Scholar
Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature Rev. Cancer10, 878–889 (2010). ArticleCAS Google Scholar
Virchow, R. in Die krankhaften Geschwülste (ed. Virchow, R.) 57–101 (Verlag von August von Hirschwald, Berlin, 1863). Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). ArticlePubMed Google Scholar
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature474, 327–336 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fraher, M. H., O'Toole, P. W. & Quigley, E. M. Techniques used to characterize the gut microbiota: a guide for the clinician. Nature Rev. Gastroenterol. Hepatol9, 312–322 (2012). ArticleCAS Google Scholar
Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012). ArticleCAS Google Scholar
Colditz, G. A., Sellers, T. A. & Trapido, E. Epidemiology — identifying the causes and preventability of cancer? Nature Rev. Cancer6, 75–83 (2006). ArticleCAS Google Scholar
Peto, J. Cancer epidemiology in the last century and the next decade. Nature411, 390–395 (2001). ArticleCASPubMed Google Scholar
Grice, E. A. & Segre, J. A. The skin microbiome. Nature Rev. Microbiol.9, 244–253 (2011). ArticleCAS Google Scholar
Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature499, 97–101 (2013). ArticleCASPubMed Google Scholar
Sacksteder, M. R. Occurrence of spontaneous tumors in the germfree F344 rat. J. Natl Cancer Inst.57, 1371–1373 (1976). ArticleCASPubMed Google Scholar
Schreiber, H., Nettesheim, P., Lijinsky, W., Richter, C. B. & Walburg, H. E. Jr Induction of lung cancer in germfree, specific-pathogen-free, and infected rats by _N_-nitrosoheptamethyleneimine: enhancement by respiratory infection. J. Natl Cancer Inst.49, 1107–1114 (1972). CASPubMed Google Scholar
Reddy, B. S. et al. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res.35, 287–290 (1975). CASPubMed Google Scholar
Reddy, B. S. & Watanabe, K. Effect of intestinal microflora on 2,2′-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J. Natl Cancer Inst.61, 1269–1271 (1978). ArticleCASPubMed Google Scholar
Reddy, B. S., Weisburger, J. H., Narisawa, T. & Wynder, E. L. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and _N_-methyl-_N_′-nitro-_N_-nitrosoguanidine. Cancer Res.34, 2368–2372 (1974). CASPubMed Google Scholar
Laqueur, G. L., Matsumoto, H. & Yamamoto, R. S. Comparison of the carcinogenicity of methylazoxymethanol-β-D-glucosiduronic acid in conventional and germfree Sprague-Dawley rats. J. Natl Cancer Inst.67, 1053–1055 (1981). CASPubMed Google Scholar
Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE4, e6026 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Lofgren, J. L. et al. Lack of commensal flora in _Helicobacter pylori_-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology140, 210–220 (2011). ArticlePubMed Google Scholar
Li, Y. et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in _APC_Min/+ mice. Carcinogenesis33, 1231–1238 (2012). ArticleCASPubMed Google Scholar
Vannucci, L. et al. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol.32, 609–617 (2008). PubMed Google Scholar
Dove, W. F. et al. Intestinal neoplasia in the _Apc_Min mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res.57, 812–814 (1997). CASPubMed Google Scholar
Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res.68, 10060–10067 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yu, L. X. et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology52, 1322–1333 (2010). ArticleCASPubMed Google Scholar
Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature491, 254–258 (2012). ArticleCASPubMedPubMed Central Google Scholar
Klimesova, K. et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm. Bowel Dis.19, 1266–1277 (2013). ArticlePubMed Google Scholar
Lee, C. W. et al. Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res.68, 3540–3548 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. L. et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J. Natl Cancer Inst.104, 488–492 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wong, B. C. et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA291, 187–194 (2004). ArticleCASPubMed Google Scholar
Coley, W. B. Treatment of inoperable malignant tumors with the toxins of erysipelas and the Bacillus prodigiosus. Trans. Amer. Surg. Assn12, 183–212 (1894). Google Scholar
Shear, M. J. & Andervont, H. B. Chemical treatment of tumors. III. separation of hemorrhage-producing fraction of B. coli filtrate. Exp. Biol. Med. (Maywood)34, 323–324 (1936). ArticleCAS Google Scholar
Pradere, J. P., Dapito, D. H. & Schwabe, R. F. The yin and yang of toll-like receptors in cancer. Oncogenehttp://dx.doi.org/10.1038/onc.2013.302 (2013).
Garaude, J., Kent, A., van Rooijen, N. & Blander, J. M. Simultaneous targeting of Toll- and NOD-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med.4, 120ra16 (2012). ArticlePubMedCAS Google Scholar
Peek, R. M. Jr & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer2, 28–37 (2002). ArticleCAS Google Scholar
Fox, J. G. & Wang, T. C. Inflammation, atrophy, and gastric cancer. J. Clin. Invest.117, 60–69 (2007). ArticleCASPubMed Google Scholar
Islami, F. & Kamangar, F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev. Res. (Phila)1, 329–338 (2008). ArticleCAS Google Scholar
Caygill, C. P., Hill, M. J., Braddick, M. & Sharp, J. C. Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet343, 83–84 (1994). ArticleCASPubMed Google Scholar
Welton, J. C., Marr, J. S. & Friedman, S. M. Association between hepatobiliary cancer and typhoid carrier state. Lancet1, 791–794 (1979). ArticleCASPubMed Google Scholar
Wotherspoon, A. C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet342, 575–577 (1993). ArticleCASPubMed Google Scholar
Lecuit, M. et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N. Engl. J. Med.350, 239–248 (2004). ArticleCASPubMed Google Scholar
Senff, N. J. et al. European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood112, 1600–1609 (2008). ArticleCASPubMed Google Scholar
Ferreri, A. J. et al. Chlamydophila psittaci eradication with doxycycline as first-line targeted therapy for ocular adnexae lymphoma: final results of an international phase II trial. J. Clin. Oncol.30, 2988–2994 (2012). ArticleCASPubMed Google Scholar
Ochi, A. et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med.209, 1671–1687 (2012). ArticleCASPubMedPubMed Central Google Scholar
Michaud, D. S., Joshipura, K., Giovannucci, E. & Fuchs, C. S. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J. Natl Cancer Inst.99, 171–175 (2007). ArticlePubMed Google Scholar
Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut61, 582–588 (2012). ArticleCASPubMed Google Scholar
Pragman, A. A., Kim, H. B., Reilly, C. S., Wendt, C. & Isaacson, R. E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE7, e47305 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sethi, S. & Murphy, T. F. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N. Engl. J. Med.359, 2355–2365 (2008). ArticleCASPubMed Google Scholar
Houghton, A. M. Mechanistic links between COPD and lung cancer. Nature Rev. Cancer13, 233–245 (2013). ArticleCASPubMed Google Scholar
Melkamu, T., Qian, X., Upadhyaya, P., O'Sullivan, M. G. & Kassie, F. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation- driven lung cancer. Vet. Pathol.50, 895–902 (2013). ArticleCASPubMedPubMed Central Google Scholar
Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA105, 652–656 (2008). ArticleCASPubMedPubMed Central Google Scholar
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science307, 1915–1920 (2005). ArticleCASPubMed Google Scholar
Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature449, 811–818 (2007). ArticleCASPubMed Google Scholar
Salzman, N. H., Underwood, M. A. & Bevins, C. L. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol.19, 70–83 (2007). ArticleCASPubMed Google Scholar
Nestle, F. O., Di Meglio, P., Qin, J. Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nature Rev. Immunol.9, 679–691 (2009). ArticleCAS Google Scholar
Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell140, 845–858 (2010). ArticleCASPubMed Google Scholar
Pabst, O. New concepts in the generation and functions of IgA. Nature Rev. Immunol.12, 821–832 (2012). ArticleCAS Google Scholar
Ashida, H., Ogawa, M., Kim, M., Mimuro, H. & Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nature Chem. Biol.8, 36–45 (2011). ArticleCAS Google Scholar
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med.368, 407–415 (2013). ArticleCASPubMed Google Scholar
Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science336, 1325–1329 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nature Rev. Microbiol.11, 285–293 (2013). ArticleCAS Google Scholar
Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest.123, 700–711 (2013). CASPubMedPubMed Central Google Scholar
Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA110, 9862–9867 (2013). ArticleCASPubMedPubMed Central Google Scholar
Houlston, R. S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genet.42, 973–977 (2010). ArticleCASPubMed Google Scholar
Peters, U. et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology144, 799–807 (2013). ArticleCASPubMed Google Scholar
Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science295, 1726–1729 (2002). ArticleCASPubMed Google Scholar
Irvine, A. D., McLean, W. H. & Leung, D. Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med.365, 1315–1327 (2011). ArticleCASPubMed Google Scholar
Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell. Metab.16, 559–564 (2012). ArticleCASPubMed Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Ward, J. M. et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J. Natl Cancer Inst.86, 1222–1227 (1994). ArticleCASPubMed Google Scholar
Erdman, S. E. et al. Nitric oxide and TNF-α trigger colonic inflammation and carcinogenesis in _Helicobacter hepaticus_-infected, Rag2-deficient mice. Proc. Natl Acad. Sci. USA106, 1027–1032 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. C. et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology128, 891–906 (2005). ArticleCASPubMed Google Scholar
Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med.15, 1016–1022 (2009). ArticleCASPubMed Google Scholar
Boulard, O., Kirchberger, S., Royston, D. J., Maloy, K. J. & Powrie, F. M. Identification of a genetic locus controlling bacteria-driven colitis and associated cancer through effects on innate inflammation. J. Exp. Med.209, 1309–1324 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rao, V. P. et al. Proinflammatory CD4+ CD45RBhi lymphocytes promote mammary and intestinal carcinogenesis in _Apc_Min/+ mice. Cancer Res.66, 57–61 (2006). ArticleCASPubMed Google Scholar
Garrett, W. S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell16, 208–219 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. L. et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol57, 803–812 (2012). ArticlePubMed Google Scholar
Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature500, 585–588 (2013). ArticleCASPubMed Google Scholar
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature500, 541–546 (2013). ArticleCASPubMed Google Scholar
Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer4, 579–591 (2004). ArticleCAS Google Scholar
Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature487, 104–108 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE7, e39743 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sanapareddy, N. et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J.6, 1858–1868 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J.6, 320–329 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res.22, 292–298 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe14, 207–215 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe14, 195–206 (2013). ArticleCASPubMedPubMed Central Google Scholar
Allen-Vercoe, E., Strauss, J. & Chadee, K. Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes2, 294–298 (2011). ArticlePubMed Google Scholar
Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA109, 1269–1274 (2012). ArticleCASPubMedPubMed Central Google Scholar
Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity34, 665–679 (2011). ArticleCASPubMed Google Scholar
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2, 204 (2007). ArticleCASPubMed Google Scholar
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol.13, R79 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science328, 228–231 (2012). ArticleCAS Google Scholar
Patwa, L. G. et al. Chronic intestinal inflammation induces stress-response genes in commensal Escherichia coli. Gastroenterology141, 1842–1851 (2011). ArticleCASPubMed Google Scholar
Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nature Rev. Microbiol.10, 717–725 (2012). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Moresco, E. M., LaVine, D. & Beutler, B. Toll-like receptors. Curr. Biol.21, R488–R493 (2011). ArticleCASPubMed Google Scholar
Fukata, M. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology133, 1869–1881 (2007). ArticleCASPubMed Google Scholar
Fukata, M. et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis.17, 1464–1473 (2011). ArticlePubMed Google Scholar
Tye, H. et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell22, 466–478 (2012). ArticleCASPubMed Google Scholar
Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature470, 115–119 (2011). ArticleCASPubMed Google Scholar
Brandl, K. et al. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc. Natl Acad. Sci. USA107, 19967–19972 (2010). ArticleCASPubMedPubMed Central Google Scholar
Neufert, C. et al. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J. Clin. Invest.123, 1428–1443 (2013). ArticleCASPubMedPubMed Central Google Scholar
Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science317, 121–124 (2007). ArticleCASPubMed Google Scholar
Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science317, 124–127 (2007). ArticleCASPubMed Google Scholar
Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in _Apc_min/+ mice. Nature Med.16, 665–670 (2010). ArticleCASPubMed Google Scholar
Kennedy, C. L. et al. Differential role of MyD88 and Mal/TIRAP in TLR2-mediated gastric tumourigenesis. Oncogenehttp://dx.doi.org/10.1038/onc.2013.205 (2013).
Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med.207, 1625–1636 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Rev. Immunol.8, 458–466 (2008). ArticleCAS Google Scholar
Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleCASPubMed Google Scholar
Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA106, 15813–15818 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rehman, A. et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut60, 1354–1362 (2011). ArticleCASPubMed Google Scholar
McGovern, D. P. et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet.14, 1245–1250 (2005). ArticleCASPubMed Google Scholar
Allen, I. C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med.207, 1045–1056 (2010). ArticleCASPubMedPubMed Central Google Scholar
Allen, I. C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity36, 742–754 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA107, 21635–21640 (2010). ArticlePubMedPubMed Central Google Scholar
Travaglione, S., Fabbri, A. & Fiorentini, C. The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect. Agent Cancer3, 4 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Nesic, D., Hsu, Y. & Stebbins, C. E. Assembly and function of a bacterial genotoxin. Nature429, 429–433 (2004). ArticleCASPubMed Google Scholar
Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA107, 11537–11542 (2010). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. L. & Bayles, D. O. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit. Rev. Microbiol.32, 227–248 (2006). ArticleCASPubMed Google Scholar
Elwell, C. A. & Dreyfus, L. A. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol. Microbiol.37, 952–963 (2000). ArticleCASPubMed Google Scholar
Fox, J. G. et al. Gastroenteritis in NF-κB-deficient mice is produced with wild-type Camplyobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect. Immun.72, 1116–1125 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shen, Z. et al. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect. Immun.77, 2508–2516 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nougayrede, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science313, 848–851 (2006). ArticleCASPubMed Google Scholar
Buc, E. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE8, e56964 (2013). ArticleCASPubMedPubMed Central Google Scholar
Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe8, 292–300 (2010). ArticleCASPubMedPubMed Central Google Scholar
Putze, J. et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect. Immun.77, 4696–4703 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H. & Gaskins, H. R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol.3, 448 (2012). ArticleCASPubMedPubMed Central Google Scholar
Huycke, M. M. & Gaskins, H. R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med. (Maywood)229, 586–597 (2004). ArticleCAS Google Scholar
Wang, X. & Huycke, M. M. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology132, 551–561 (2007). ArticleCASPubMed Google Scholar
Wang, X. et al. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by _Enterococcus faecalis_-infected macrophages. Gastroenterology142, 543–551 (2012). ArticleCASPubMed Google Scholar
Balish, E. & Warner, T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am. J. Pathol.160, 2253–2257 (2002). ArticleCASPubMedPubMed Central Google Scholar
Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res.4, 9–14 (2006). ArticleCASPubMed Google Scholar
Ohnishi, N. et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA105, 1003–1008 (2008). ArticleCASPubMedPubMed Central Google Scholar
Han, Y. W. et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol.187, 5330–5340 (2005). ArticleCASPubMedPubMed Central Google Scholar
Philipp, B. Bacterial degradation of bile salts. Appl. Microbiol. Biotechnol.89, 903–915 (2011). ArticleCASPubMed Google Scholar
Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell21, 36–51 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nyangale, E. P., Mottram, D. S. & Gibson, G. R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J. Proteome Res.11, 5573–5585 (2012). ArticleCASPubMed Google Scholar
Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res.56, 184–196 (2012). ArticleCASPubMed Google Scholar
Alam, B. S., Saporoschetz, I. B. & Epstein, S. S. Synthesis of nitrosopiperidine from nitrate and piperidine in the gastro-intestinal tract of the rat. Nature232, 199–200 (1971). ArticleCASPubMed Google Scholar
Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr.93, 1062–1072 (2011). ArticleCASPubMed Google Scholar
Bindels, L. B. et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer107, 1337–1344 (2012). ArticleCASPubMedPubMed Central Google Scholar
Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell. Metab.13, 517–526 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hu, S. et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE6, e16221 (2011). ArticleCASPubMedPubMed Central Google Scholar
Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature461, 1282–1286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Eberhardt, M. V., Lee, C. Y. & Liu, R. H. Antioxidant activity of fresh apples. Nature405, 903–904 (2000). ArticleCASPubMed Google Scholar
Yang, C. S., Wang, X., Lu, G. & Picinich, S. C. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nature Rev. Cancer9, 429–439 (2009). ArticleCAS Google Scholar
van Duynhoven, J. et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4531–4538 (2011). ArticleCASPubMed Google Scholar
Fardet, A. et al. Metabolomics provide new insight on the metabolism of dietary phytochemicals in rats. J. Nutr.138, 1282–1287 (2008). ArticleCASPubMed Google Scholar
Dutton, R. J. & Turnbaugh, P. J. Taking a metagenomic view of human nutrition. Curr. Opin. Clin. Nutr. Metab. Care15, 448–454 (2012). ArticlePubMed Google Scholar
Chang, M. C. & Keasling, J. D. Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chem. Biol.2, 674–681 (2006). ArticleCAS Google Scholar
Mabrok, H. B. et al. Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis33, 203–208 (2012). ArticleCASPubMed Google Scholar
Kassie, F. et al. Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3-methylimidazo [4,5-f]quinoline. Carcinogenesis22, 1721–1725 (2001). ArticleCASPubMed Google Scholar
Hirayama, K. et al. Effects of human intestinal flora on mutagenicity of and DNA adduct formation from food and environmental mutagens. Carcinogenesis21, 2105–2111 (2000). ArticleCASPubMed Google Scholar
Vanhaecke, L. et al. Intestinal bacteria metabolize the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine following consumption of a single cooked chicken meal in humans. Food Chem. Toxicol.46, 140–148 (2008). ArticleCASPubMed Google Scholar
Sharp, J. O., Wood, T. K. & Alvarez-Cohen, L. Aerobic biodegradation of _N_-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol. Bioeng.89, 608–618 (2005). ArticleCASPubMed Google Scholar
Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Rev. Cancer7, 599–612 (2007). ArticleCAS Google Scholar
Seitz, H. K. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology98, 406–413 (1990). ArticleCASPubMed Google Scholar
Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science339, 1084–1088 (2013). ArticleCASPubMed Google Scholar
Singh, S., Eldin, C., Kowalczewska, M. & Raoult, D. Axenic culture of fastidious and intracellular bacteria. Trends Microbiol.21, 92–99 (2013). ArticleCASPubMed Google Scholar
Bull, A. T. The renaissance of continuous culture in the post-genomics age. J. Ind. Microbiol. Biotechnol.37, 993–1021 (2010). ArticleCASPubMed Google Scholar
Arthur, J. C. & Jobin, C. The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes4, 253–258 (2013). ArticlePubMedPubMed Central Google Scholar
Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science336, 1268–1273 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med.209, 1445–1456 (2012). ArticleCASPubMedPubMed Central Google Scholar
Robertson, S. J. et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes4, 222–231 (2013). ArticlePubMedPubMed Central Google Scholar
McCafferty, J. et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J.http://dx.doi.org/10.1038/ismej.2013.106 (2013).
Khazaie, K. et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA109, 10462–10467 (2012). ArticleCASPubMedPubMed Central Google Scholar