NF-κB, chemokine gene transcription and tumour growth (original) (raw)
Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol.18, 217–242 (2000). ArticleCASPubMed Google Scholar
Luster, A. D. The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol.14, 129–135 (2002). ArticleCASPubMed Google Scholar
Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer. Nature Rev. Immunol.2, 175–184 (2002). ArticleCAS Google Scholar
Devalaraja, M. N. & Richmond, A. Multiple chemotactic factors, fine control or redundancy? Trends Pharmacol. Sci.20, 151–156 (1999). ArticleCASPubMed Google Scholar
Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001).This article reviews the role of chemokines as regulators of tumour growth and metastasis, or the inhibition of tumour growth. ArticleCASPubMed Google Scholar
Strieter, R. M. Chemokines: not just leukocyte chemoattractants in the promotion of cancer. Nature Immunol.2, 285–286 (2001).A review of opposing roles of angiogenic and angiostatic CXC-chemokines in tumour growth. ArticleCAS Google Scholar
Payne, A. S. & Cornelius, L. A. The role of chemokines in melanoma tumor growth and metastasis. J. Invest. Dermatol.118, 915–922 (2002).This article reviews the roles of CXCL1, CXCL8 and CCL5 in melanoma. ArticleCASPubMed Google Scholar
Luan, J. et al. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J. Leukocyte Biol.62, 588–597 (1997). ArticleCASPubMed Google Scholar
Robledo, M. M. et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol. Chem.276, 45098–45105 (2001). ArticleCASPubMed Google Scholar
Wiley, H. E., Gonzalez, E. B., Maki, W., Wu, M. T., & Hwang, S. T. Expression of CC-chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl Cancer Inst.93, 1638–1643 (2001). ArticleCASPubMed Google Scholar
Sunwoo, J. B. et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous-cell carcinoma. Clin. Cancer Res.7, 1419–1428 (2001). CASPubMed Google Scholar
Dong, G. et al. Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis and the NF-κB signal pathway. Cancer Res.61, 4797–4808 (2001). CASPubMed Google Scholar
Cusack, J. C. Jr et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341, implications for systemic nuclear factor-κB inhibition. Cancer Res.61, 3535–3540 (2001).This article shows that use of the proteasome inhibitor PS-341 to block the activation of NF-κB results in the inhibition of tumour growth when it is used in combination with the chemotherapeutic agent CPT-11. CASPubMed Google Scholar
Sprenger, H., Lloyd, A. R., Meyer, R. G., Johnston, J. A. & Kelvin, D. J. Genomic structure, characterization, and identification of the promoter of the human IL-8 receptor A gene. J. Immunol.153, 2524–2532 (1994). CASPubMed Google Scholar
Bonecchi, R. et al. Induction of functional IL-8 receptors by IL-4 and IL-13 in human monocytes. J. Immunol.164, 3862–3869 (2000). ArticleCASPubMed Google Scholar
Lloyd, A. R. et al. Granulocyte-colony stimulating factor and lipopolysaccharide regulate the expression of interleukin-8 receptors on polymorphonuclear leukocytes. J. Biol. Chem.270, 28188–28192 (1995). ArticleCASPubMed Google Scholar
Ivarsson, K., Ekerydh, A., Fyhr, I. M., Janson, P. O. & Brannstrom, M. Upregulation of interleukin-8 and polarized epithelial expression of interleukin-8 receptor A in ovarian carcinomas. Acta Obstet. Gynecol. Scand.79, 777–784 (2000). CASPubMed Google Scholar
Li, A., Varney, M. L. & Singh, R. K. Expression of interleukin-8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin. Cancer Res.7, 3298–3304 (2001). CASPubMed Google Scholar
Azenshtein, E. et al. The CC-chemokine RANTES in breast carcinoma progression, regulation of expression and potential mechanisms of promalignant activity. Cancer Res.62, 1093–1102 (2002). CASPubMed Google Scholar
Mrowietz, U. et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br. J. Cancer79, 1025–1031 (1999). ArticleCASPubMedPubMed Central Google Scholar
Genin, P., Algarte, M., Roof, P., Lin, R. & Hiscott, J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-κB and IFN-regulatory factor transcription. J. Immunol.164, 5352–5361 (2000). ArticleCASPubMed Google Scholar
Yang, J. M. & Richmond, A. Constitutive IKK activity correlates with NF-κB activation in human melanoma cells. Cancer Res.61, 4901–4909 (2001).This article shows that melanoma cell lines have constitutive IKK activity, and also constitutive phosphorylation of p65, which results in constitutive NF-κB transcriptional activity and enhanced expression of chemokines. The article also shows that the chemokine CXCL1 contributes to the constitutive activation of IKK through an autocrine loop. CASPubMed Google Scholar
Yang, C.-R. et al. Coordinate modulation of Sp1, NF-κB and p53 in confluent human malignant melanoma cells after ionizing radiation. FASEB J.14, 379–392 (2000). ArticleCASPubMed Google Scholar
Vanden Berghe, W., De Bosscher, K., Boone, E., Plaisance, S. & Haegeman, G. The nuclear factor-κB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem.274, 32091–32098 (1999). ArticleCASPubMed Google Scholar
Huang, S., De Guzman, A., Bucana, C. D. & Fidler, I. J. Level of interleukin-8 expression by metastatic human melanoma cells directly correlates with constitutive NF-κB activity. Cytokines Cell. Mol. Ther.6, 9–17 (2000). ArticleCASPubMed Google Scholar
Kunz, M. et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma. A potential mechanism for high tumor aggressiveness. Am. J. Pathol.155, 753–763 (1999). ArticleCASPubMedPubMed Central Google Scholar
Huang, S., DeGuzman, A., Bucana, C. D. & Fidler, I. J. Nuclear factor-κB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin. Cancer Res.6, 2573–2581 (2000). CASPubMed Google Scholar
Bakker, T. R., Reed, D., Renno, T. & Jongeneel, C. V. Efficient adenoviral transfer of NF-κB inhibitor sensitizes melanoma to tumor necrosis factor-mediated apoptosis. Int. J. Cancer80, 320–323 (1999). ArticleCASPubMed Google Scholar
Baldwin, A. S. Control of oncogenesis and cancer-therapy resistance by the transcription factor NF-κB. J. Clin. Invest.107, 241–246 (2001).An excellent review of NF-κB, its role in cancer and the potential for therapeutic intervention using inhibitors of NF-κB. ArticleCASPubMedPubMed Central Google Scholar
Beg, A. A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev.6, 1899–1913 (1992). ArticleCASPubMed Google Scholar
Didonato, J., Mercurio, F. & Karin, M. Phosphorylation of IκB-α precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell. Biol.15, 1302–1311 (1995). ArticleCASPubMedPubMed Central Google Scholar
DiDonato, J. et al. Mapping of the inducible I-κB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol.16, 1295–1304 (1996). ArticleCASPubMedPubMed Central Google Scholar
Pando, M. P. & Verma, I. M. Signal-dependent and -independent degradation of free and NF-κB-bound IκB-α. J. Biol. Chem.275, 21278–21286 (2000). ArticleCASPubMed Google Scholar
Ling, L., Cao, Z. D. & Goeddel, D. V. NF-κB-inducing kinase activates IKK-α by phosphorylation of ser-176. Proc. Natl Acad. Sci. USA95, 3792–3797 (1998).An introduction to the biological role of NIK as an activator of IKKα. ArticleCASPubMedPubMed Central Google Scholar
Nakano, H. et al. Differential regulation of I-κB kinase-α and -β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase ERK kinase kinase. Proc. Natl Acad. Sci. USA95, 3537–3542 (1998). ArticleCASPubMedPubMed Central Google Scholar
Smith, C. et al. NF-κB-inducing kinase is dispensable for activation of NF-κB in inflammatory settings but essential for lymphotoxin-β receptor activation of NF-κB in primary human fibroblasts. J. Immunol.167, 5895–5903 (2001). ArticleCASPubMed Google Scholar
Perkins, N. D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science275, 523–527 (1997). ArticleCASPubMed Google Scholar
Shattuck-Brandt, R. L. & Richmond, A. Enhanced degradation of I-κB-α contributes to endogenous activation of NF-κB in Hs294T melanoma cells. Cancer Res.57, 3032–3039 (1997). CASPubMed Google Scholar
Shattuck, R. L., Wood, L. D., Jaffe, G. J. & Richmond, A. MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells. Mol. Cell. Biol.14, 791–802 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wood, L. D., Farmer, A. A. & Richmond, A. HMGI (Y), and SP1 in addition to NF-κB regulate transcription of the MGSA/GROα gene. Nucleic Acids Res.23, 4210–4219 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wood, L. D. & Richmond, A. Constitutive and cytokine-induced expression of the melanoma growth stimulatory activity/GROα gene requires both NF-κB and novel constitutive factors. J. Biol. Chem.270, 30619–30626 (1995). ArticleCASPubMed Google Scholar
Kondo, S., Kono, T., Sauder, D. N. & McKenzie, R. C. IL-8 gene expression and production in human keratinocytes and their modulation by UVB. J. Invest. Dermatol.101, 690–694 (1993). ArticleCASPubMed Google Scholar
Wang, Y. & Becker, D. Antisense targeting of bFGF and FGF receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nature Med.3, 887–893 (1997). ArticleCASPubMed Google Scholar
Shih, I.-M. & Herlyn, M. Autocrine and paracrine roles for growth factors in melanoma. In Vivo8, 113–123 (1994). CASPubMed Google Scholar
Gilmore, T. D., Koedood, M., Piffat, K. A. & White, D. W. Rel/NF-κB/IκB proteins and cancer. Oncogene13, 1367–1378 (1996). CASPubMed Google Scholar
Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol.3, 221–227 (2002).This article provides an up-to-date view of the role of NF-κB activation in the modulation of factors that are involved in apoptosis and cell survival. ArticleCAS Google Scholar
Dejardin, E. et al. Highly expressed p100/p52 (NF-κB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene11, 1835–1841 (1995). CASPubMed Google Scholar
Tamatani, T. et al. Enhanced IκB kinase activity is responsible for the augmented activity of NF-κB in human head and neck carcinoma cells. Cancer Lett.171, 165–172 (2001). ArticleCASPubMed Google Scholar
Mukhopadhyay, T., Roth, J. A. & Maxwell, S. A. Altered expression of the p50 subunit of the NF-κB transcription factor complex in non-small cell lung carcinoma. Oncogene11, 999–1003 (1995). CASPubMed Google Scholar
Bours, V., Dejardin, E., Goujon-Letawe, F., Merville, M. P. & Castronov, V. The NF-κB transcription factor and cancer: high expression of NF-κB and IκB-related proteins in tumor cell lines. Biochem. Pharmacol.47, 145–149 (1994). ArticleCASPubMed Google Scholar
Budunova, I. V. et al. Increased expression of p50–NF-κB and constitutive activation of NF-κB transcription factors during mouse skin carcinogenesis. Oncogene18, 7423–7431 (1999). ArticleCASPubMed Google Scholar
Visconti, R. et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NF-κB p65 protein expression. Oncogene15, 1987–1994 (1997). ArticleCASPubMed Google Scholar
Sovak, M. A. et al. Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest.100, 2952–2960 (1997). ArticleCASPubMedPubMed Central Google Scholar
Devalaraja, M., Wang, D. Z., Ballard D. W. & Richmond, A. Elevated constitutive IKK activity and IκB-α phosphorylation in Hs294T melanoma cells lead to increased basal MGSA/GROα transcription. Cancer Res.59, 1372–1377 (1999). CASPubMed Google Scholar
Dhawan, P. & Richmond, A. The role of endogenous NIK and MEKK1 in the constitutive activation of NF-κB in human melanomas. J. Biol. Chem.277, 7920–7928 (2002).This study shows that, in human melanoma, there is constitutive activation of NIK, and that blocking NIK blocks the constitutive activation of NF-κB in melanoma cells. Moreover, this NIK-mediated effect on NF-κB activity requires the activation of MEKK1 and ERK1/ERK2. ArticleCASPubMed Google Scholar
Cusack, J., Liu, R. & Baldwin, A. Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothe cin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-κB activation. Cancer Res.60, 2323–2330 (2000). CASPubMed Google Scholar
Budunova, I. V. et al. Increased expression of p50–NF-κB and constitutive activation of NF-κB transcription factors during mouse skin carcinogenesis. Oncogene19, 3003–3012 (2000). ArticleCAS Google Scholar
Mayo, M. W. & Baldwin, A. S. The transcription factor NF-κB, control of oncogenesis and cancer-therapy resistance. Biochim. Biophys. Acta1470, M55–M62 (2000). CASPubMed Google Scholar
Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature385, 540–544 (1997). ArticleCASPubMed Google Scholar
Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell7, 401–409 (2001). ArticleCASPubMed Google Scholar
Cogswell, P. C., Guttridge, D. C., Funkhouse, W. K. & Baldwin, A. S. Jr. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene19, 1123–1131 (2000). ArticleCASPubMed Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). ArticleCASPubMed Google Scholar
Fagarasan, S. et al. Alymphophasia (aly)-type nuclear factor-κB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J. Exp. Med.191, 1477–1486 (2000).This article shows that loss of NIK not only affects signalling through the lymphotoxin-β receptor, but also alters the response to chemokines, which indicates that chemokine receptors might also activate NIK. ArticleCASPubMedPubMed Central Google Scholar
Zhong, H., Voll, R. E. & Ghosh, S. Rearranged NF-κB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Mol. Cell1, 661–671 (1998). ArticleCASPubMed Google Scholar
Bird, T. A., Schooley, K., Dower, S. K., Hagen, H. & Virca, G. D. Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein-kinase-II-mediated phosphorylation of the p65 subunit. J. Biol. Chem.272, 32606–32612 (1997). ArticleCASPubMed Google Scholar
Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem.274, 30353–30356 (1999). ArticleCASPubMed Google Scholar
Sizemore, N., Lerner, N., Dombrowski, N., Sakurai, H. & Stark, G. R. Distinct roles of the IκB kinase α- and β-subunits in liberating nuclear factor-κB (NF-κB) from IκB and in phosphorylating the p65 subunit of NF-κB. J. Biol. Chem.277, 3863–3869 (2002).This article shows the role of AKT in the activation of IKKα, which potentially phosphorylates the p65 subunit of NF-κB to potentiate its transactivating capacity. ArticleCASPubMed Google Scholar
Delhase, M., Li, N. & Karin, M. Kinase regulation in inflammatory response. Nature406, 367–368 (2000). ArticleCASPubMed Google Scholar
Koul, D., Yao, Y., Abbruzzese, J. L., Yung, W. K. & Reddy, S. A. Tumor suppressor MMAC/PTEN inhibits cytokine induced NF-κB activation without interfering with the IκB degradation pathway. J. Biol. Chem.276, 11402–11408 (2001). ArticleCASPubMed Google Scholar
Madrid, L. V., Mayo, M. W., Reuther, J. Y. & Baldwin, A. S. Jr. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem.276, 18934–18940 (2001). ArticleCASPubMed Google Scholar
Celebi, J. T., Shendrik, I., Silvers, D. N. & Peacocke, M. Identification of PTEN mutations in metastatic melanoma specimens. J. Med. Genet.37, 653–657 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mayo, M. W. et al. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science278, 1812–1815 (1997). ArticleCASPubMed Google Scholar
Finco, T. S. et al. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem.272, 24113–24116 (1997). ArticleCASPubMed Google Scholar
Norris, J. L. & Baldwin, A. S. Oncogenic Ras enhances NF-κB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J. Biol. Chem.274, 13841–13846 (1999). ArticleCASPubMed Google Scholar
Troppmair, J., Hartkamp, J. & Rapp, U. R. Activation of NF-κB by oncogenic Raf in HEK293 cells occurs through autocrine recruitment of the stress kinase cascade. Oncogene17, 685–690 (1998). ArticleCASPubMed Google Scholar
Yin, M. J. et al. HTLV-1 Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell93, 875–884 (1998). ArticleCASPubMed Google Scholar
Chu, Z., DiDonato, J., Hawiger, J. & Ballard, D. The tax oncogene of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J. Biol. Chem.273, 15891–15894 (1998). ArticleCASPubMed Google Scholar
Geleziunas, R. et al. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase-α (IKKα) and IKKβ cellular kinases. Mol. Cell. Biol.18, 5157–5165 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mosialos, G. The role of Rel/NF-κB proteins in viral oncogenesis and the regulation of viral transcription. Semin. Cancer Biol.8, 121–129 (1997). ArticleCASPubMed Google Scholar
LaPorta, C. A. & Camolli, R. PKC-dependent modulation of IκBα–NF-κB pathway in low metastatic B16F1 murine melanoma cells and in highly metastatic BL6 cells. Anticancer Res.18, 2591–2597 (1998). CAS Google Scholar
Biswas, D. K et al. The nuclear factor-κB (NF-κB): a potential therapeutic target for estrogen receptor-negative breast cancers. Proc. Natl Acad. Sci. USA98, 10386–10391 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wilson, L., Szabo, C. & Salzman, A. L. Protein kinase-C-dependent activation of NF-κB in enterocytes is independent of IκB degradation. Gastroenterology117, 106–114 (1999). ArticleCASPubMed Google Scholar
Han, Y., Meng, T., Murray, N. R., Fields, A. P. & Brasier, A. R. Interleukin-1-induced nuclear factor-κB–IκB-α autoregulatory feedback loop in hepatocytes. A role for protein kinase Cα in post-transcriptional regulation of IκB-α resynthesis. J. Biol. Chem.274, 939–947 (1999). ArticleCASPubMed Google Scholar
Anrather, J., Csizmadia, V., Soares, M. P. & Winkler, H. Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Cζ in primary endothelial cells. J. Biol. Chem.274, 13594–13603 (1999). ArticleCASPubMed Google Scholar
Wang, D. & Richmond, A. NF-κB activation by the CXC-chemokine MGSA/GROα involves the MEKK1/p38 MAP kinase pathway. J. Biol. Chem.276, 3650–3659 (2001). ArticleCASPubMed Google Scholar
Richmond, A. & Thomas, H. G. Melanoma growth stimulatory activity, a novel growth factor with a tissue distribution not restricted to melanoma tissue. J. Cell. Biochem.36, 185–198 (1988). ArticleCASPubMed Google Scholar
Singh, R. K. et al. Expression of interleukin-8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res.54, 3242–3247 (1994). CASPubMed Google Scholar
Singh, R. K. et al. Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin-8. Cancer Res.55, 3669–3674 (1995). CASPubMed Google Scholar
Schadendorf, D. et al. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J. Immunol.151, 2667–2675 (1993). CASPubMed Google Scholar
Schadendorf, D. et al. Metastatic potential of human melanoma cells in nude mice — characterization of phenotype, cytokine secretion and tumor-associated antigens. Br. J. Cancer74, 194–199 (1996). ArticleCASPubMedPubMed Central Google Scholar
Loukinova, E. et al. Growth-regulated oncogene-α expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC-receptor-2-dependent mechanism. Oncogene19, 3477–3486 (2000). ArticleCASPubMed Google Scholar
Matsusaka, T. et al. Transcription factors NF-IL-6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin-6 and interleukin-8. Proc. Natl Acad. Sci. USA90, 10193–10197 (1993). ArticleCASPubMedPubMed Central Google Scholar
Balentien, E. et al. Effects of MGSA/GROα on melanocyte transformation. Oncogene6, 1115–1124 (1991). CASPubMed Google Scholar
Nirodi, C. S. & Richmond, A. Role of poly (ADP-ribose) polymerase (PARP) in the transcriptional regulation of the melanoma growth stimulatory activity (CXCL1) gene. J. Biol. Chem.276, 9366–9374 (2001).This article shows that PARP participates with NF-κB in the modulation of transcription ofCXCL1. ArticleCASPubMed Google Scholar
Nirodi, C. S. et al. The 170-kDa CCAAT displacement protein (CDP/Cut) selectively binds the IUR _cis_-element in the CXCL1 promoter. The role of CDP in the negative regulation of CXCL1 gene expression. J. Biol. Chem.276, 9366–9374 (2001).This study further defines theCXCL1enhanceosome and shows that binding of the transcriptional repressor CDP to an element adjacent to the NF-κB-binding site represses the transcription ofCXCL1. ArticleCASPubMed Google Scholar
Hassa, P. O. & Hottiger, M. O. A role of poly (ADP-ribose) polymerase in NF-κB transcriptional activation. Biol. Chem.380, 953–959 (1999). ArticleCASPubMed Google Scholar
Ludlow, C., Choy, R. & Blochlinger, K. Functional analysis of Drosophila and mammalian Cut proteins in flies. Dev. Biol.178, 149–159 (1996). ArticleCASPubMed Google Scholar
Coqueret, O., Berube, G. & Nepveu, A. The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase. EMBO J.17, 4680–4694 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mailly, F. G. et al. The human Cut homeodomain protein can repress gene expression by two distinct mechanisms: active repression and competition for binding-site occupancy. Mol. Cell. Biol.16, 5346–5357 (1996). ArticleCASPubMedPubMed Central Google Scholar
Li, S. et al. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/Cut homolog, is associated with histone deacetylation. J. Biol. Chem.274, 7803–7815 (1999) ArticleCASPubMed Google Scholar
Li, S., Aufiero, B., Schiltz, R. L. & Walsh, M. J. Regulation of the homeodomain CCAAT displacement/Cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP. Proc. Natl Acad. Sci. USA97, 7166–7171 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xiao, H., Hasegawa, T. & Isobe, K. p300 collaborates with Sp1 and Sp3 in p21(Waf1/Cip1) promoter activation induced by histone deacetylase inhibitor. J. Biol. Chem.275, 1371–1376 (2000). ArticleCASPubMed Google Scholar
Kundu, T. K. et al. Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol. Cell.6, 551–561 (2000).This article shows the role of p300 in acetylation of histones and the stabilization of the transcriptional machinery. ArticleCASPubMed Google Scholar
Bottazzi, B., Walter, S., Govoni, D., Colotta, F. & Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth and susceptibility to IL-2 therapy of murine melanoma. J. Immunol.148, 1280–1285 (1992). CASPubMed Google Scholar
Nakashima, E. et al. Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharm. Res.12, 1598–1604 (1995). ArticleCASPubMed Google Scholar
Berman, K. S. et al. Sulindac enhances tumor necrosis factor-α-mediated apoptosis of lung cancer cell lines by inhibition of nuclear factor-κB. Clin. Cancer Res.8, 354–360 (2002). CASPubMed Google Scholar
May, M. J. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science289, 1550–1554 (2000). ArticleCASPubMed Google Scholar
Yamamoto, Y. & Gaynor, R. B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest.107, 135–142 (2001).This article emphasizes the available data that indicate that, by developing methods of disrupting the NF-κB pathway, new advances can be made in the therapeutic intervention of acute and chronic inflammatory conditions, as well as malignancies. ArticleCASPubMedPubMed Central Google Scholar
Hideshima, T. et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem.277, 16639–16647 (2002). ArticleCASPubMed Google Scholar
Tan, C. & Waldmann, T. A. Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res.62, 1083–1086 (2002). CASPubMed Google Scholar
Adams, J. Proteasome inhibition, a novel approach to cancer therapy. Trends Mol. Med.8, 49–54 (2002).This article reviews the current status of the use of proteasome inhibitors to block tumour growth. Article Google Scholar
Zhang, J., Chang, C. C., Lombardi, L., Dalla-Favera, R. Rearranged NF-κB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Oncogene9, 1931–1937 (1994). CASPubMed Google Scholar
Higgins, K. A. et al. Antisense inhibition of the p65 subunit of NF-κB blocks tumorigenicity and causes tumor regression. Proc. Natl Acad. Sci. USA90, 9901–9905 (1993). ArticleCASPubMedPubMed Central Google Scholar
Shah, S. A. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell. Biochem.82, 110–122 (2001). ArticleCASPubMed Google Scholar
Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P. & Aggarwal, B. B. Curcumin downregulates cell-survival mechanisms in human prostate cancer cell lines. Oncogene20, 7597–7609 (2001). ArticleCASPubMed Google Scholar
Nourbakhsh, M. et al. The NF-κB repressing factor is involved in basal repression and interleukin (IL)-1-induced activation of IL-8 transcription by binding to a conserved NF-κB-flanking sequence element. J. Biol. Chem.276, 4501–4508 (2001).This article models the components of the enhanceosome forCXCL8and shows that a transcriptional repressor binds to an element flanking the NF-κB element. So, the models for the transcription ofCXCL8, CXCL1andIL-6are similar. ArticleCASPubMed Google Scholar
Stein, B., Cogswell, P. S. & Baldwin, A. S. Functional and physical associations between NF-κB and C/EBP family members: a Rel domain–bZIP interaction. Mol. Cell Biol.13, 3964–3974 (1993). ArticleCASPubMedPubMed Central Google Scholar
Li, S., Aufiero, B., Schiltz, R. L. & Walsh, M. J. Regulation of the homeodomain CCAAT displacement/Cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP. Proc. Natl Acad. Sci. USA97, 7166–7171 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chemokine/chemokine receptor nomenclature. International Union of Immunological Societies/World Health Organization Subcommittee on Chemokine Nomenclature. J. Leukoc Biol.70, 465–466 (2001). ||Pubmed