The Tissue-Specific Stem Cell as a Target for Chemoprevention (original) (raw)
References
Cohnheim, J. (1867). Ueber entzundung und eiterung. Path Anat Physiol Kiln Med, 40, 1–79. Article Google Scholar
Maitland, N., & Collins, A. (2008). Prostate cancer stem cells: a new target for therapy. Journal of Clinical Oncology, 26, 2862–2870. ArticlePubMed Google Scholar
Mimeault, M., Mehta, P., Hauke, R., & Batra, S. (2008). Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Endocrine Reviews, 29, 234–252. ArticlePubMedCAS Google Scholar
Wu, C. J. (2008). Immunologic targeting of the cancer stem cell. In D. Melton & L. Gerard (Eds.), StemBook [Internet]. Cambridge: Harvard Stem Cell Institute. Google Scholar
Zhao, R., Zhu, Y., & Shi, Y. (2008). New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacology & Therapeutics, 119, 74–82. ArticleCAS Google Scholar
Maund, S. L., & Cramer, S. D. (2009). Translational implications of stromal-epithelial interactions in prostate cancer and the potential role of the prostate cancer stem/progenitor cells. In R. Bradshaw & E. Dennis (Eds.), The Handbook of Cell Signaling (2nd ed., pp. 2773–2782). San Diego: Elsevier Inc. Google Scholar
Chen, Y., Peng, C., Sullivan, C., Li, D., & Li, S. (2010). Novel therapeutic agents against cancer stem cells of chronic myeloid leukemia. Anticancer Agents in Medicinal Chemistry, 10, 111–115. CAS Google Scholar
Denysenko, T., Gennero, L., Roos, M., et al. (2010). Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochemistry and Function, 28, 343–351. ArticlePubMedCAS Google Scholar
Gorelik, E., Lokshin, A., & Levina, V. (2010). Lung cancer stem cells as a target for therapy. Anticancer Agents in Medicinal Chemistry, 10, 164–171. CAS Google Scholar
McDermott, S., & Wicha, M. (2010). Targeting breast cancer stem cells. Molecular Oncology, 4(5), 404–419. Google Scholar
Mimeault, M., & Batra, S. (2010). New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histology and Histopathology, 25, 1057–1073. PubMedCAS Google Scholar
Landgren, H., & Curtis, M. (2010). Locating and labeling neural stem cells in the brain. Journal of Cellular Physiology, 226(1), 1–7. Google Scholar
Liu, S., Dontu, G., & Wicha, M. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7, 86–95. ArticlePubMedCAS Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111. ArticlePubMedCAS Google Scholar
Sutherland, K., & Berns, A. (2010). Cell of origin of lung cancer. Molecular Oncology, 4(5), 397–403. Google Scholar
Goldstein, A., Stoyanova, T., & Witte, O. (2010). Primitive origins of prostate cancer: In vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Molecular Oncology, 4(5), 385–396. Google Scholar
Szotek, P., Chang, H., Brennand, K., et al. (2008). Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 105, 12469–12473. ArticlePubMedCAS Google Scholar
Schwartz, R., & Verfaillie, C. (2010). Hepatic stem cells. Methods in Molecular Biology, 640, 167–179. ArticlePubMedCAS Google Scholar
Li, C., Heidt, D., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037. ArticlePubMedCAS Google Scholar
Carpentino, J., Hynes, M., Appelman, H., et al. (2009). Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Research, 69, 8208–8215. ArticlePubMedCAS Google Scholar
Prosperi, J., & Goss, K. (2010). A Wnt-ow of Opportunity: Targeting the Wnt/beta-Catenin Pathway in Breast Cancer. Current Drug Targets, 11(9), 1074–1088. Google Scholar
Rubin, L., & de Sauvage, F. (2006). Targeting the Hedgehog pathway in cancer. Nature Reviews. Drug Discovery, 5, 1026–1033. ArticlePubMedCAS Google Scholar
Wang, Z., Li, Y., & Sarkar, F. (2010). Notch Signaling Proteins: Legitimate Targets for Cancer Therapy. Current Protein and Peptide Science, 11(6), 398–408. Google Scholar
Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850. ArticlePubMedCAS Google Scholar
Yang, L., Xie, G., Fan, Q., & Xie, J. (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 29, 469–481. ArticlePubMed Google Scholar
Perez-Losada, J., & Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nature Reviews. Cancer, 3, 434–443. ArticlePubMedCAS Google Scholar
Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicines, 3, 730–737. ArticleCAS Google Scholar
Krivtsov, A., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822. ArticlePubMedCAS Google Scholar
Berenblum, I. (1941). The mechanism of carcinogenesis: a study of the significance of cocarcinogenic action and related phenomena. Cancer Research, 1, 807–814. CAS Google Scholar
Berenblum, I. (1954). A speculative review; the probable nature of promoting action and its significance in the understanding of the mechanism of carcinogenesis. Cancer Research, 14, 471–477. PubMedCAS Google Scholar
Maund, S. L., Barclay, W. W., Hover, L. D., et al. Interleukin-1 alpha mediates the anti-proliferative effects of 1,25 dihydroxyvitamin D3. (In submission.)
Welch, H., Schwartz, L., & Woloshin, S. (2000). Are increasing 5-year survival rates evidence of success against cancer? JAMA, 283, 2975–2978. ArticlePubMedCAS Google Scholar
Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer Statistics, 2010. CA Cancer Journal for Clinicians, 60(5), 277–300.
Alix-Panabières, C., Riethdorf, S., & Pantel, K. (2008). Circulating tumor cells and bone marrow micrometastasis. Clinical Cancer Research, 14, 5013–5021. ArticlePubMed Google Scholar
Peach, G., Kim, C., Zacharakis, E., Purkayastha, S., & Ziprin, P. (2010). Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. British Journal of Cancer, 102, 1327–1334. ArticlePubMedCAS Google Scholar
Gradilone, A., Naso, G., Raimondi, C., et al. (2010). Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Annals of Oncology. doi: 10.1093/annonc/mdq323
Cooke, P., Young, P., & Cunha, G. (1991). Androgen receptor expression in developing male reproductive organs. Endocrinology, 128, 2867–2873. ArticlePubMedCAS Google Scholar
De Marzo, A., Nelson, W., Meeker, A., & Coffey, D. (1998). Stem cell features of benign and malignant prostate epithelial cells. Journal d'Urologie, 160, 2381–2392. Article Google Scholar
Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67, 4807–4815. ArticlePubMedCAS Google Scholar
Warrell, R. J., Frankel, S., Miller, W. J., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). The New England Journal of Medicine, 324, 1385–1393. ArticlePubMed Google Scholar
Ginestier, C., Wicinski, J., Cervera, N., et al. (2009). Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle, 8, 3297–3302. ArticlePubMedCAS Google Scholar
Chute, J., Muramoto, G., Whitesides, J., et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 11707–11712. ArticlePubMedCAS Google Scholar
Juge, N., Mithen, R., & Traka, M. (2007). Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences, 64, 1105–1127. ArticlePubMedCAS Google Scholar
Li, Y., Zhang, T., Korkaya, H., et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research, 16, 2580–2590. ArticlePubMedCAS Google Scholar
Trump, D. L., Deeb, K. K., & Johnson, C. S. (2010). Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer Journal, 16, 1–9. ArticleCAS Google Scholar
Garland, C., Gorham, E., Mohr, S., & Garland, F. (2009). Vitamin D for cancer prevention: global perspective. Annals of Epidemiology, 19, 468–483. ArticlePubMed Google Scholar
Flores, O., Wang, Z., Knudsen, K. E., & Burnstein, K. L. (2010). Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology, 151, 896–908. ArticlePubMedCAS Google Scholar
Rao, A., Woodruff, R. D., Wade, W. N., Kute, T. E., & Cramer, S. D. (2002). Genistein and vitamin D synergistically inhibit human prostatic epithelial cell growth. The Journal of Nutrition, 132, 3191–3194. PubMedCAS Google Scholar
Liu, M., Lee, M. H., Cohen, M., Bommakanti, M., & Freedman, L. P. (1996). Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes & Development, 10, 142–153. ArticleCAS Google Scholar
Lehmann, B., Schättiger, K., & Meurer, M. (2010). Conversion of vitamin D(3) to hormonally active 1alpha,25-dihydroxyvitamin D(3) in cultured keratinocytes: Relevance to cell growth and differentiation. Journal of Steroid Biochemistry and Molecular Biology, 121(1–2), 322–323. Google Scholar
Regenbrecht, C., Jung, M., Lehrach, H., & Adjaye, J. (2008). The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Medical Genomics, 1, 49. ArticlePubMed Google Scholar
Slusarz, A., Shenouda, N., Sakla, M., et al. (2010). Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Research, 70, 3382–3390. ArticlePubMedCAS Google Scholar
Jaiswal, A., Marlow, B., Gupta, N., & Narayan, S. (2002). Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21, 8414–8427. ArticlePubMedCAS Google Scholar
Wang, Z., Zhang, Y., Banerjee, S., Li, Y., & Sarkar, F. (2006). Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer, 106, 2503–2513. ArticlePubMedCAS Google Scholar
Hua, W., Fu, Y., Liao, Y., et al. (2010). Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. European Journal of Pharmacology, 637, 16–21. ArticlePubMedCAS Google Scholar
Kakarala, M., Brenner, D., Korkaya, H., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785. ArticlePubMedCAS Google Scholar
Yu, Y., Kanwar, S., Patel, B., Nautiyal, J., Sarkar, F., & Majumdar, A. (2009). Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Translational Oncology, 2, 321–328. PubMed Google Scholar
Jeong, J., An, J., Kwon, Y., Rhee, J., & Lee, Y. (2009). Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82. ArticlePubMedCAS Google Scholar
Tachibana, H. (2009). Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum of Nutrition, 61, 156–169. ArticlePubMedCAS Google Scholar
Pahlke, G., Ngiewih, Y., Kern, M., Jakobs, S., Marko, D., & Eisenbrand, G. (2006). Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. Journal of Agricultural and Food Chemistry, 54, 7075–7082. ArticlePubMedCAS Google Scholar
Kim, J., Zhang, X., Rieger-Christ, K., et al. (2006). Suppression of Wnt signaling by the green tea compound (−)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. The Journal of Biological Chemistry, 281, 10865–10875. ArticlePubMedCAS Google Scholar
Zhou, W., Kallifatidis, G., Baumann, B., et al. (2010). Dietary polyphenol quercetin targets pancreatic cancer stem cells. International Journal of Oncology, 37, 551–561. PubMedCAS Google Scholar
Yap, W., Chang, P., Han, H., et al. (2008). Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. British Journal of Cancer, 99, 1832–1841. ArticlePubMedCAS Google Scholar
Yap, W., Zaiden, N., Luk, S., et al. (2010). In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology, 85, 248–258. ArticlePubMedCAS Google Scholar
Luk, S., Yap, W., Chiu, Y., et al. (2010). Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. International Journal of Cancer. doi:10.1002/ijc.25546
Kundu, J., & Surh, Y. (2008). Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Letters, 269, 243–261. ArticlePubMedCAS Google Scholar
Khan, N., Adhami, V., & Mukhtar, H. (2010). Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocrine Related Cancer, 17, R39–52. ArticlePubMedCAS Google Scholar
van Breemen, R., & Pajkovic, N. (2008). Multitargeted therapy of cancer by lycopene. Cancer Letters, 269, 339–351. ArticlePubMed Google Scholar
Link, A., Balaguer, F., & Goel, A. (2010). Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochemical Pharmacology, 80(12), 1771–1792. Google Scholar
Cang, S., Lu, Q., Ma, Y., & Liu, D. (2010). Clinical advances in hypomethylating agents targeting epigenetic pathways. Current Cancer Drug Targets, 10, 539–545. ArticlePubMedCAS Google Scholar
Stallings, R., Foley, N., Bryan, K., Buckley, P., & Bray, I. (2010). Therapeutic targeting of miRNAs in neuroblastoma. Expert Opinion on Therapeutic Targets, 14(9), 951–962. Google Scholar
Tan, J., Cang, S., Ma, Y., Petrillo, R., & Liu, D. (2010). Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. Journal of Hematology and Oncology, 3, 5. ArticlePubMed Google Scholar
Ginestier, C., & Wicha, M. (2007). Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Research, 9, 109. ArticlePubMed Google Scholar
Savarese, T., Strohsnitter, W., Low, H., et al. (2007). Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Research, 9, R29. ArticlePubMed Google Scholar
Khramtsov, A., Khramtsova, G., Tretiakova, M., Huo, D., Olopade, O., & Goss, K. (2010). Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. The American Journal of Pathology, 176, 2911–2920. ArticlePubMed Google Scholar
Asselin-Labat, M., Vaillant, F., Sheridan, J., et al. (2010). Control of mammary stem cell function by steroid hormone signalling. Nature, 465, 798–802. ArticlePubMedCAS Google Scholar