The Tissue-Specific Stem Cell as a Target for Chemoprevention (original) (raw)

References

  1. Cohnheim, J. (1867). Ueber entzundung und eiterung. Path Anat Physiol Kiln Med, 40, 1–79.
    Article Google Scholar
  2. Maitland, N., & Collins, A. (2008). Prostate cancer stem cells: a new target for therapy. Journal of Clinical Oncology, 26, 2862–2870.
    Article PubMed Google Scholar
  3. Mimeault, M., Mehta, P., Hauke, R., & Batra, S. (2008). Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Endocrine Reviews, 29, 234–252.
    Article PubMed CAS Google Scholar
  4. Wu, C. J. (2008). Immunologic targeting of the cancer stem cell. In D. Melton & L. Gerard (Eds.), StemBook [Internet]. Cambridge: Harvard Stem Cell Institute.
    Google Scholar
  5. Zhao, R., Zhu, Y., & Shi, Y. (2008). New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacology & Therapeutics, 119, 74–82.
    Article CAS Google Scholar
  6. Maund, S. L., & Cramer, S. D. (2009). Translational implications of stromal-epithelial interactions in prostate cancer and the potential role of the prostate cancer stem/progenitor cells. In R. Bradshaw & E. Dennis (Eds.), The Handbook of Cell Signaling (2nd ed., pp. 2773–2782). San Diego: Elsevier Inc.
    Google Scholar
  7. Chen, Y., Peng, C., Sullivan, C., Li, D., & Li, S. (2010). Novel therapeutic agents against cancer stem cells of chronic myeloid leukemia. Anticancer Agents in Medicinal Chemistry, 10, 111–115.
    CAS Google Scholar
  8. Denysenko, T., Gennero, L., Roos, M., et al. (2010). Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochemistry and Function, 28, 343–351.
    Article PubMed CAS Google Scholar
  9. Gorelik, E., Lokshin, A., & Levina, V. (2010). Lung cancer stem cells as a target for therapy. Anticancer Agents in Medicinal Chemistry, 10, 164–171.
    CAS Google Scholar
  10. McDermott, S., & Wicha, M. (2010). Targeting breast cancer stem cells. Molecular Oncology, 4(5), 404–419.
    Google Scholar
  11. Mimeault, M., & Batra, S. (2010). New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histology and Histopathology, 25, 1057–1073.
    PubMed CAS Google Scholar
  12. Landgren, H., & Curtis, M. (2010). Locating and labeling neural stem cells in the brain. Journal of Cellular Physiology, 226(1), 1–7.
    Google Scholar
  13. Liu, S., Dontu, G., & Wicha, M. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7, 86–95.
    Article PubMed CAS Google Scholar
  14. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.
    Article PubMed CAS Google Scholar
  15. Sutherland, K., & Berns, A. (2010). Cell of origin of lung cancer. Molecular Oncology, 4(5), 397–403.
    Google Scholar
  16. Goldstein, A., Stoyanova, T., & Witte, O. (2010). Primitive origins of prostate cancer: In vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Molecular Oncology, 4(5), 385–396.
    Google Scholar
  17. Szotek, P., Chang, H., Brennand, K., et al. (2008). Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 105, 12469–12473.
    Article PubMed CAS Google Scholar
  18. Schwartz, R., & Verfaillie, C. (2010). Hepatic stem cells. Methods in Molecular Biology, 640, 167–179.
    Article PubMed CAS Google Scholar
  19. Li, C., Heidt, D., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.
    Article PubMed CAS Google Scholar
  20. Carpentino, J., Hynes, M., Appelman, H., et al. (2009). Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Research, 69, 8208–8215.
    Article PubMed CAS Google Scholar
  21. Prosperi, J., & Goss, K. (2010). A Wnt-ow of Opportunity: Targeting the Wnt/beta-Catenin Pathway in Breast Cancer. Current Drug Targets, 11(9), 1074–1088.
    Google Scholar
  22. Rubin, L., & de Sauvage, F. (2006). Targeting the Hedgehog pathway in cancer. Nature Reviews. Drug Discovery, 5, 1026–1033.
    Article PubMed CAS Google Scholar
  23. Wang, Z., Li, Y., & Sarkar, F. (2010). Notch Signaling Proteins: Legitimate Targets for Cancer Therapy. Current Protein and Peptide Science, 11(6), 398–408.
    Google Scholar
  24. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.
    Article PubMed CAS Google Scholar
  25. Yang, L., Xie, G., Fan, Q., & Xie, J. (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 29, 469–481.
    Article PubMed Google Scholar
  26. Perez-Losada, J., & Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nature Reviews. Cancer, 3, 434–443.
    Article PubMed CAS Google Scholar
  27. Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicines, 3, 730–737.
    Article CAS Google Scholar
  28. Krivtsov, A., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.
    Article PubMed CAS Google Scholar
  29. Berenblum, I. (1941). The mechanism of carcinogenesis: a study of the significance of cocarcinogenic action and related phenomena. Cancer Research, 1, 807–814.
    CAS Google Scholar
  30. Berenblum, I. (1954). A speculative review; the probable nature of promoting action and its significance in the understanding of the mechanism of carcinogenesis. Cancer Research, 14, 471–477.
    PubMed CAS Google Scholar
  31. Maund, S. L., Barclay, W. W., Hover, L. D., et al. Interleukin-1 alpha mediates the anti-proliferative effects of 1,25 dihydroxyvitamin D3. (In submission.)
  32. Welch, H., Schwartz, L., & Woloshin, S. (2000). Are increasing 5-year survival rates evidence of success against cancer? JAMA, 283, 2975–2978.
    Article PubMed CAS Google Scholar
  33. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer Statistics, 2010. CA Cancer Journal for Clinicians, 60(5), 277–300.
  34. Alix-Panabières, C., Riethdorf, S., & Pantel, K. (2008). Circulating tumor cells and bone marrow micrometastasis. Clinical Cancer Research, 14, 5013–5021.
    Article PubMed Google Scholar
  35. Peach, G., Kim, C., Zacharakis, E., Purkayastha, S., & Ziprin, P. (2010). Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. British Journal of Cancer, 102, 1327–1334.
    Article PubMed CAS Google Scholar
  36. Gradilone, A., Naso, G., Raimondi, C., et al. (2010). Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Annals of Oncology. doi: 10.1093/annonc/mdq323
  37. Cooke, P., Young, P., & Cunha, G. (1991). Androgen receptor expression in developing male reproductive organs. Endocrinology, 128, 2867–2873.
    Article PubMed CAS Google Scholar
  38. De Marzo, A., Nelson, W., Meeker, A., & Coffey, D. (1998). Stem cell features of benign and malignant prostate epithelial cells. Journal d'Urologie, 160, 2381–2392.
    Article Google Scholar
  39. Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67, 4807–4815.
    Article PubMed CAS Google Scholar
  40. Warrell, R. J., Frankel, S., Miller, W. J., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). The New England Journal of Medicine, 324, 1385–1393.
    Article PubMed Google Scholar
  41. Ginestier, C., Wicinski, J., Cervera, N., et al. (2009). Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle, 8, 3297–3302.
    Article PubMed CAS Google Scholar
  42. Chute, J., Muramoto, G., Whitesides, J., et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 11707–11712.
    Article PubMed CAS Google Scholar
  43. Juge, N., Mithen, R., & Traka, M. (2007). Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences, 64, 1105–1127.
    Article PubMed CAS Google Scholar
  44. Li, Y., Zhang, T., Korkaya, H., et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research, 16, 2580–2590.
    Article PubMed CAS Google Scholar
  45. Trump, D. L., Deeb, K. K., & Johnson, C. S. (2010). Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer Journal, 16, 1–9.
    Article CAS Google Scholar
  46. Garland, C., Gorham, E., Mohr, S., & Garland, F. (2009). Vitamin D for cancer prevention: global perspective. Annals of Epidemiology, 19, 468–483.
    Article PubMed Google Scholar
  47. Flores, O., Wang, Z., Knudsen, K. E., & Burnstein, K. L. (2010). Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology, 151, 896–908.
    Article PubMed CAS Google Scholar
  48. Rao, A., Woodruff, R. D., Wade, W. N., Kute, T. E., & Cramer, S. D. (2002). Genistein and vitamin D synergistically inhibit human prostatic epithelial cell growth. The Journal of Nutrition, 132, 3191–3194.
    PubMed CAS Google Scholar
  49. Liu, M., Lee, M. H., Cohen, M., Bommakanti, M., & Freedman, L. P. (1996). Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes & Development, 10, 142–153.
    Article CAS Google Scholar
  50. Lehmann, B., Schättiger, K., & Meurer, M. (2010). Conversion of vitamin D(3) to hormonally active 1alpha,25-dihydroxyvitamin D(3) in cultured keratinocytes: Relevance to cell growth and differentiation. Journal of Steroid Biochemistry and Molecular Biology, 121(1–2), 322–323.
    Google Scholar
  51. Regenbrecht, C., Jung, M., Lehrach, H., & Adjaye, J. (2008). The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Medical Genomics, 1, 49.
    Article PubMed Google Scholar
  52. Slusarz, A., Shenouda, N., Sakla, M., et al. (2010). Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Research, 70, 3382–3390.
    Article PubMed CAS Google Scholar
  53. Jaiswal, A., Marlow, B., Gupta, N., & Narayan, S. (2002). Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21, 8414–8427.
    Article PubMed CAS Google Scholar
  54. Wang, Z., Zhang, Y., Banerjee, S., Li, Y., & Sarkar, F. (2006). Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer, 106, 2503–2513.
    Article PubMed CAS Google Scholar
  55. Hua, W., Fu, Y., Liao, Y., et al. (2010). Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. European Journal of Pharmacology, 637, 16–21.
    Article PubMed CAS Google Scholar
  56. Kakarala, M., Brenner, D., Korkaya, H., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.
    Article PubMed CAS Google Scholar
  57. Yu, Y., Kanwar, S., Patel, B., Nautiyal, J., Sarkar, F., & Majumdar, A. (2009). Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Translational Oncology, 2, 321–328.
    PubMed Google Scholar
  58. Jeong, J., An, J., Kwon, Y., Rhee, J., & Lee, Y. (2009). Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.
    Article PubMed CAS Google Scholar
  59. Tachibana, H. (2009). Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum of Nutrition, 61, 156–169.
    Article PubMed CAS Google Scholar
  60. Pahlke, G., Ngiewih, Y., Kern, M., Jakobs, S., Marko, D., & Eisenbrand, G. (2006). Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. Journal of Agricultural and Food Chemistry, 54, 7075–7082.
    Article PubMed CAS Google Scholar
  61. Kim, J., Zhang, X., Rieger-Christ, K., et al. (2006). Suppression of Wnt signaling by the green tea compound (−)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. The Journal of Biological Chemistry, 281, 10865–10875.
    Article PubMed CAS Google Scholar
  62. Zhou, W., Kallifatidis, G., Baumann, B., et al. (2010). Dietary polyphenol quercetin targets pancreatic cancer stem cells. International Journal of Oncology, 37, 551–561.
    PubMed CAS Google Scholar
  63. Yap, W., Chang, P., Han, H., et al. (2008). Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. British Journal of Cancer, 99, 1832–1841.
    Article PubMed CAS Google Scholar
  64. Yap, W., Zaiden, N., Luk, S., et al. (2010). In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology, 85, 248–258.
    Article PubMed CAS Google Scholar
  65. Luk, S., Yap, W., Chiu, Y., et al. (2010). Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. International Journal of Cancer. doi:10.1002/ijc.25546
  66. Kundu, J., & Surh, Y. (2008). Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Letters, 269, 243–261.
    Article PubMed CAS Google Scholar
  67. Khan, N., Adhami, V., & Mukhtar, H. (2010). Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocrine Related Cancer, 17, R39–52.
    Article PubMed CAS Google Scholar
  68. van Breemen, R., & Pajkovic, N. (2008). Multitargeted therapy of cancer by lycopene. Cancer Letters, 269, 339–351.
    Article PubMed Google Scholar
  69. Link, A., Balaguer, F., & Goel, A. (2010). Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochemical Pharmacology, 80(12), 1771–1792.
    Google Scholar
  70. Cang, S., Lu, Q., Ma, Y., & Liu, D. (2010). Clinical advances in hypomethylating agents targeting epigenetic pathways. Current Cancer Drug Targets, 10, 539–545.
    Article PubMed CAS Google Scholar
  71. Stallings, R., Foley, N., Bryan, K., Buckley, P., & Bray, I. (2010). Therapeutic targeting of miRNAs in neuroblastoma. Expert Opinion on Therapeutic Targets, 14(9), 951–962.
    Google Scholar
  72. Tan, J., Cang, S., Ma, Y., Petrillo, R., & Liu, D. (2010). Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. Journal of Hematology and Oncology, 3, 5.
    Article PubMed Google Scholar
  73. Ginestier, C., & Wicha, M. (2007). Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Research, 9, 109.
    Article PubMed Google Scholar
  74. Savarese, T., Strohsnitter, W., Low, H., et al. (2007). Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Research, 9, R29.
    Article PubMed Google Scholar
  75. Khramtsov, A., Khramtsova, G., Tretiakova, M., Huo, D., Olopade, O., & Goss, K. (2010). Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. The American Journal of Pathology, 176, 2911–2920.
    Article PubMed Google Scholar
  76. Asselin-Labat, M., Vaillant, F., Sheridan, J., et al. (2010). Control of mammary stem cell function by steroid hormone signalling. Nature, 465, 798–802.
    Article PubMed CAS Google Scholar

Download references