Diversity of axin in signaling pathways and its relation to colorectal cancer (original) (raw)
Cancer. World Health Organization. February 2006. Retrieved on 2007-05-24.
Colorectal cancer facts and figures 2008.
Vainio H, Miller AB. Primary secondary prevention in CRC. Acta Oncol. 2003;42:809–15. ArticlePubMed Google Scholar
Sung JJ, Lau JY, Goh KL, Leung WK. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6:871–6. ArticlePubMed Google Scholar
Dhar GM, Shah GN, Naheed B, Hafiza. Epidemiological trend in the distribution of cancer in Kashmir Valley. J Epidenmiol Conmnm Health. 1993;47:290–2. ArticleCAS Google Scholar
Khuroo MS, Zargar SA, Mahajan R, Banday MA. High incidence of oesophageal and gastric cancer in Kashmir in a population with special personal and dietary habits. Gut. 1992;33(1):11–5. ArticlePubMedCAS Google Scholar
O’brien MJ, Winawer SJ, Zauber AG. Flat adenomas in the National Polyp Study: is there increased risk forhigh-grade dysplasia initially or during surveillance? Clin Gastroenterol Hepatol. 2004;2:905–11. ArticlePubMed Google Scholar
Zauber AG, O’Brien MJ, Winawer SJ. On finding flat adenomas: is the search worth the gain? Gastroenterology. 2002;122:839–40. ArticlePubMed Google Scholar
Paula MC, Harold F. The genetics of CRC. Ann Intern Med. 2002;137:603–12. Google Scholar
Zeng L, Fagotto F, Zhang T, et al. The mouse fused locus encodes Axin, an inhibitor of the Wnt signalling pathway that regulates embryonic axis formation. Cell. 1997;90:181–92. ArticlePubMedCAS Google Scholar
Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA. 2004;101:2882–7. ArticlePubMedCAS Google Scholar
Yamamoto H, Kishida S, Uochi T, et al. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3 beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol. 1998;18:2867–75. PubMedCAS Google Scholar
Mai M, Qian C, Yokomizo A, et al. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23–q24. Genomics. 1999;55:341–4. ArticlePubMedCAS Google Scholar
Liu W, Dong X, Mai M, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet. 2000;26:146–7. ArticlePubMedCAS Google Scholar
Dong X, Seelan RS, Qian C, et al. Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenet Cell Genet. 2001;93:26–8. ArticlePubMedCAS Google Scholar
Behrens J, Jerchow BA, Wurtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9. ArticlePubMedCAS Google Scholar
Hart MJ, los Santos DR, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with th APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;573–581.
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–84. ArticlePubMedCAS Google Scholar
Fagotto F, Jho E, Zeng L, Kurth T, Joos T, Kaufmann C, Costantini F. Domains of Axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J Cell Biol. 1999;145:741–56. ArticlePubMedCAS Google Scholar
Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem. 1999;274:3439–45. ArticlePubMedCAS Google Scholar
Julius MA, Schelbert B, Hsu W, Fitzpatrick E, Jho E, Fagotto F, Costantini F, Kitajewski J. Domains of Axin and disheveled required for interaction and function in Wnt signaling. Biochem Biophys Res Commun. 2000;276:1162–9. ArticlePubMedCAS Google Scholar
Kishida S, Yamamoto H, Hino SI, Ikeda S, Kishida M, Kikuchi A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate -catenin stability. Mol Cell Biol. 1999;19:4414–22. PubMedCAS Google Scholar
Li L, Yuan H, Weaver CD, Mao J, Farr GH III, Sussman DJ, Jonkers J, Kimelman D, Wu D. Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 1999;18:4233–40. ArticlePubMedCAS Google Scholar
Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC. Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 1999;18:2823–35. ArticlePubMedCAS Google Scholar
Schwarz-Romond T, Asbrand C, Bakkers J, Ku¨hl M, Schaeffe HJ, Huelsken RJ, Behrens J, Hammerschmidt M, Birchmeier W. The ankyrin repeat protein Diversin recruits Casein kinase Iε to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev. 2002;16:2073–84. ArticlePubMedCAS Google Scholar
Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M. Axin facilitates Smad3activation in the transforming growth factor signaling pathway. Mol Cell Biol. 2001;21:5132–41. ArticlePubMedCAS Google Scholar
Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol. 1998;8:591–4. ArticlePubMedCAS Google Scholar
Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by Axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci USA. 1998;95:3020–3. ArticlePubMedCAS Google Scholar
Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74:1043–50. ArticlePubMedCAS Google Scholar
Yu HM, Jerchow IB, Sheu TJ, Liu B, Costantin Fi, Puzas JE, Birchmeier W, Hsu W. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development. 2005;132:1995–2005. ArticlePubMedCAS Google Scholar
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24:245–50. ArticlePubMedCAS Google Scholar
Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, Nagorney DM, Burgart LJ, Roche PC, Smith DI, Ross JA, Liu W. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene. 2002;21:4863–71. ArticlePubMedCAS Google Scholar
Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell. 2003;4:395–406. ArticlePubMedCAS Google Scholar
Jho E, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. Wnt/-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22:1172–83. ArticlePubMedCAS Google Scholar
Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER. Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277:21657–65. ArticlePubMedCAS Google Scholar
Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol. 2002;22:1184–93. ArticlePubMedCAS Google Scholar
Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, Garcia PD, Randazzo FM, Escobedo J, Fantl WJ, Williams LT. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA. 2001;98:14973–8. ArticlePubMedCAS Google Scholar
Anderson CB, Neufeld KL, White RL. Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proc Natl Acad Sci USA. 2002;99:8683–8. ArticlePubMedCAS Google Scholar
Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003;1:E10. ArticlePubMed Google Scholar
Mao J, Wang J, Liu B, Pan W, Farr GH 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7:801–9. ArticlePubMedCAS Google Scholar
Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S. Vaizel D: arrow encodes an LDLreceptor-related protein essential for Wingless signaling. Nature. 2000;407:527–30. ArticlePubMedCAS Google Scholar
Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E. Wg/Wnt signal canbe transmitted through arrow/LRP5, 6 and Axin independently of Zw3/GSK-3ß activity. Dev Cell. 2003;4:407–18. ArticlePubMedCAS Google Scholar
Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A. Axin, anegative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of ß-catenin. J Biol Chem. 1998;273:10823–6. ArticlePubMedCAS Google Scholar
Hart MJ, de los Santos R, Albert IN, Polakis P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK-3β. Curr Biol. 1998;8:573–81. ArticlePubMedCAS Google Scholar
Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, Akiyama T. Axin, an inhibitor of the Wnt signaling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells. 1998;3:395–403. ArticlePubMedCAS Google Scholar
Rubinfeld B, Tice DA, Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase IÂ. J Biol Chem. 2001;276:39037–45. ArticlePubMedCAS Google Scholar
Shiomi K, Uchida H, Keino-Masu K, Masu M. Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Curr Biol. 2003;13:73–7. ArticlePubMedCAS Google Scholar
Kadoya T, Kishida S, Fukui A, Hinoi T, Michiue T, Asashima M, Kikuchi A. Inhibition of Wnt signaling pathway by a novel Axin-binding protein. J Biol Chem. 2000;275:37030–7. ArticlePubMedCAS Google Scholar
Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating axin to the plasma membrane during wingless signaling. Curr Biol. 2003;13:960–6. ArticlePubMedCAS Google Scholar
Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3ß regulates its stability. J Biol Chem. 1999;274:10681–4. ArticlePubMedCAS Google Scholar
Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 and activatesc-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem. 1999;274:35247–54. ArticlePubMedCAS Google Scholar
Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC. Axin utilizes distinct regions for competitive MEKK1 and MEKK4 binding and JNK activation. J Biol Chem. 2003;278:37451–8. Axin: a master scaffold for multiple signaling pathways neurosignals 2004;13:99–113 111. ArticlePubMedCAS Google Scholar
Kusano S, Raab-Traub N. I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways. Mol Cell Biol. 2002;22:6393–405. ArticlePubMedCAS Google Scholar
Yamazaki H, Nusse R. Identification of DCAP, a Drosophila homolog of a glucose transport regulatory complex. Mech Dev. 2002;119:115–9. ArticlePubMedCAS Google Scholar
Cowan CA, Henkemeyer M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature. 2001;413:174–9. ArticlePubMedCAS Google Scholar
Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC, Lin SC. Differential molecular assemblies under liethe dual function of Axin in modulating theWnt and JNK pathways. J Biol Chem. 2000;276:32152–9. Article Google Scholar
Zhang Y, Neo SY, Han J, Lin SC. Dimerization choices control the ability of Axin and disheveled to activate c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem. 2000;275:25008–14. ArticlePubMedCAS Google Scholar
Zhang Y, Qiu WJ, Chan SC, Han J, He X, Lin SC. Casein kinase I and casein kinase II differentially regulate Axin function in Wnt and JNK pathways. J Biol Chem. 2002;277:17706–12. ArticlePubMedCAS Google Scholar
Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem. 2002;277:42981–6. ArticlePubMedCAS Google Scholar
Lustig BJ, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221. PubMedCAS Google Scholar
Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71. ArticlePubMedCAS Google Scholar
Chakrabarty S, Fan D, Varani J. Modulation of differentiation and proliferation in human colon carcinoma cells by transforming growth factor beta 1 and beta 2. Int J Cancer. 1990;46:493–9. ArticlePubMedCAS Google Scholar
Derynck R, Zhang Y, Feng X-H. Smads: transcriptional activators of TGF-b responses. Cell. 1998;95:737–40. ArticlePubMedCAS Google Scholar
Miyazono K, ten Dijke P, Heldin C-H. TGF-b signaling by Smad proteins. Adv Immunol. 2000;75:115–57. ArticlePubMedCAS Google Scholar
Pierreux CE, Nicola′s FJ, Hill CS. Transforming growth factor b-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000;20:9041–54. ArticlePubMedCAS Google Scholar
Xiao Z, Liu X, Lodis HF. Importin b mediates nuclear translocation of Smad 3. J Biol Chem. 2000;275:23425–8. ArticlePubMedCAS Google Scholar
Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol. 2000;20:9346–55. ArticlePubMedCAS Google Scholar
Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFb receptor. Cell. 1998;95:779–91. ArticlePubMedCAS Google Scholar
Dong C, Li Z, Alvarez R Jr, Feng X-H, Goldschmidt-Clermont PJ. Microtubule binding to Smads may regulate TGFb activity. Mol Cell. 2000;5:27–34. ArticlePubMedCAS Google Scholar
Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A. GSK-3b-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by b-catenin and protein phosphatase 2A complexed with Axin. Oncogene. 2000;19:537–45. ArticlePubMedCAS Google Scholar
Massague J, Blain SW, Lo RS. TGFb signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309. ArticlePubMedCAS Google Scholar
Hoosein NM, McKnight MK, Levine AE, Mulder KM, Childress KE, Brattain DE, Brattain MG. Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-beta 1. Exp Cell Res. 1989;181:442–53. ArticlePubMedCAS Google Scholar
Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev. 1995;4:549–54. PubMedCAS Google Scholar
Robson H, Anderson E, James RD, Schofield PF. Transforming growth factor beta 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. Br J Cancer. 1996;74:753–8. ArticlePubMedCAS Google Scholar
Sheng H, Shao J, O’Mahony CA, Lamps L, Albo D, Isakson PC, Berger DH, DuBois RN, Beauchamp RD. Transformation of intestinal epithelial cells by chronic TGF-beta1 treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. Oncogene. 1999;18:855–67. ArticlePubMedCAS Google Scholar
Schroy P, Rifkin J, Coffey RJ, Winawer S, Friedman E. Role of transforming growth factor beta 1 in induction of colon carcinoma differentiation by hexamethylene bisacetamide. Cancer Res. 1990;50:261–5. PubMedCAS Google Scholar
Claire RW, Roger JD. The JNK signal transduction pathway. Curr Opin Genet Dev. 2002;12:14–21. Article Google Scholar
Hagemann C, Blank JL. The ups and downs of MEK kinase interactions. Cell Signal. 2001;13:863–75. ArticlePubMedCAS Google Scholar
Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC. Differential molecular assemblies under liethe dual function of Axin in modulating the Wnt and JNK pathways. J Biol Chem. 2001;276:32152–9. ArticlePubMedCAS Google Scholar
Webster MT, Rozycka M, Sara E, et al. Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer. 2000;28:443–53. ArticlePubMedCAS Google Scholar
Bellamy CO, Malcomson RD, Harrison DJ, et al. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol. 1995;6:3–16. ArticlePubMedCAS Google Scholar
Wu R, Zhai Y, Fearon ER, et al. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res. 2001;61:8247–55. PubMedCAS Google Scholar
Domingo E, Espin E, Armengol M, et al. Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer. 2004;39:138–42. ArticlePubMedCAS Google Scholar
Li-Hua JIN, Qiu-Jie SHAO, Wen LUO, Zhi-Yun YE, Qing LI and Sheng-Cai. LIN1, detection of point mutations of the axin1 gene in colorectal cancers. Int. J Cancer. 2003;107:696–99.
Marie-Therese W, Magdalena R, Elizabeth S, Elaine D, Matthew S, Neville Y. Sequence Variants of the Axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding chromosomes & cancer 2000;28:443–453.
Soichi I, Wataru K, Chie K, Shigeki A, Mitsuhiro N, Yoshiaki Y. Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131:773–82. Article Google Scholar