Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18(3):315–321
Block ML, Hong JS (2005) Microglial and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98
Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175 ArticlePubMedCAS Google Scholar
Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69 ArticlePubMedCAS Google Scholar
Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412 ArticlePubMedCAS Google Scholar
Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394 ArticlePubMedCAS Google Scholar
Tang Y, Le W (2014) “Good” and “bad” microglia in Parkinson’s disease: an understanding of homeostatic mechanisms in immunomodulation. In: Thomas M (ed) Inflammation in Parkinson’s disease. Springer, New York, pp 105–126
Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4):867–883 ArticlePubMedCAS Google Scholar
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502 ArticlePubMedCAS Google Scholar
Ding YM, Jaumotte JD, Signore AP, Zigmond MJ (2004) Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J Neurochem 89(3):776–787 ArticlePubMedCAS Google Scholar
Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184 ArticlePubMed CentralPubMedCAS Google Scholar
Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56(1):16–23 ArticlePubMedCAS Google Scholar
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–1120 ArticlePubMed CentralPubMedCAS Google Scholar
Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY et al (2007) Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117(6):1658–1669 ArticlePubMed CentralPubMedCAS Google Scholar
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444 ArticlePubMed CentralPubMedCAS Google Scholar
Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9(2):174–191 ArticlePubMedCAS Google Scholar
Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418 ArticlePubMed CentralPubMed Google Scholar
Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci 21(21):8447–8455 PubMedCAS Google Scholar
Li R, Huang YG, Fang D, Le WD (2004) (−)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78(5):723–731 ArticlePubMedCAS Google Scholar
Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721 ArticlePubMedCAS Google Scholar
Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72(4):1466–1471 ArticlePubMedCAS Google Scholar
Gao HM, Liu B, Zhang WQ, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17(11):1954−+ PubMed Google Scholar
Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29(3):381–393 ArticlePubMedCAS Google Scholar
Zhou XL, Spittau B, Krieglstein K (2012) TGF beta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflamm 9:210–223 ArticleCAS Google Scholar
Ledeboer A, Breve JJ, Poole S, Tilders FJ, Van Dam AM (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30(2):134–142 ArticlePubMedCAS Google Scholar
Zhao WH, Xie WJ, Xiao Q, Beers DR, Appel SH (2006) Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 99(4):1176–1187 ArticlePubMedCAS Google Scholar
Park KW, Lee DY, Joe EH, Kim SU, Jin BK (2005) Neuroprotective role of microglia expressing interleukin-4. J Neurosci Res 81(3):397–402 ArticlePubMedCAS Google Scholar
Boche D, Cunningham C, Docagne F, Scott H, Perry VH (2006) TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 22(3):638–650 ArticlePubMedCAS Google Scholar
Boche D, Cunningham C, Gauldie J, Perry VH (2003) Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab 23(10):1174–1182 ArticlePubMedCAS Google Scholar
Bogdan C, Vodovotz Y, Nathan C (1991) Macrophage deactivation by interleukin 10. J Exp Med 174(6):1549–1555 ArticlePubMedCAS Google Scholar
Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67(1):97–103 PubMedCAS Google Scholar
Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210(2–4):153–160 ArticlePubMedCAS Google Scholar
Suh HS, Zhao ML, Derico L, Choi N, Lee SC (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflamm 10:37 ArticleCAS Google Scholar
Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H et al (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913 ArticlePubMedCAS Google Scholar
Morris SM (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr 7(1):45–51 ArticleCAS Google Scholar
Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654 ArticlePubMedCAS Google Scholar
Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127 ArticlePubMedCAS Google Scholar
Wu GY, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40(4):1053–1063 ArticlePubMed CentralPubMedCAS Google Scholar
Jenkins CL, Bretscher LE, Guzei IA, Raines RT (2003) Effect of 3-hydroxyproline residues on collagen stability. J Am Chem Soc 125(21):6422–6427 ArticlePubMedCAS Google Scholar
Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58(2):244–258 ArticlePubMedCAS Google Scholar
Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ et al (2014) Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 21(3):369–380 ArticlePubMed CentralPubMedCAS Google Scholar
Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflamm 3:27 ArticleCAS Google Scholar
Nair MG, Du YR, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M et al (2009) Alternatively activated macrophage-derived RELM-alpha is a negative regulator of type 2 inflammation in the lung (vol 206, pg 397, 2009). J Exp Med 206(5):1201 ArticlePubMed CentralCAS Google Scholar
Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W et al (2000) FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J 19(15):4046–4055 ArticlePubMed CentralPubMedCAS Google Scholar
Munitz A, Seidu L, Cole ET, Ahrens R, Hogan SP, Rothenberg ME (2009) Resistin-like molecule a decreases glucose tolerance during intestinal inflammation. J Immunol 182(4):2357–2363 ArticlePubMed CentralPubMedCAS Google Scholar
Munitz A, Waddell A, Seidu L, Ahrens R, Hogan SP, Rothenberg ME (2008) Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis. J Allergy Clin Immun 122(6):1200–1207 ArticlePubMed CentralPubMedCAS Google Scholar
Chang NCA, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH et al (2001) A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 276(20):17497–17506 ArticlePubMedCAS Google Scholar
Hung SL, Chang AC, Kato I, Chang NCA (2002) Transient expression of Ym1, a heparin-binding lectin, during developmental hematopoiesis and inflammation. J Leukocyte Biol 72(1):72–82 PubMedCAS Google Scholar
Recklies AD, White C, Ling H (2002) The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase beta-mediated signalling pathways. Biochem J 365:119–126 ArticlePubMed CentralPubMedCAS Google Scholar
Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh G (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukocyte Biol 71(4):597–602 PubMedCAS Google Scholar
Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK (2002) T(H)2 cytokines and allergic challenge induce YM1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem 277(45):42821–42829 ArticlePubMedCAS Google Scholar
Lee E, Yook J, Haa K, Chang HW (2005) Induction of Ym1/2 in mouse bone marrow-derived mast cells by IL-4 and identification of Ym1/2 in connective tissue type-like mast cells derived from bone marrow cells cultured with IL-4 and stem cell factor. Immunol Cell Biol 83(5):468–474 ArticlePubMedCAS Google Scholar
Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F (2012) Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 120(2):292–301 ArticlePubMed CentralPubMedCAS Google Scholar
Taylor PR, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26(2):104–110 ArticlePubMedCAS Google Scholar
Stahl PD, Ezekowitz RAB (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10(1):50–55 ArticlePubMedCAS Google Scholar
Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L et al (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295(5561):1898–1901 ArticlePubMedCAS Google Scholar
Chieppa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G et al (2003) Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171(9):4552–4560 ArticlePubMedCAS Google Scholar
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444 ArticlePubMed CentralPubMedCAS Google Scholar
Madsen DH, Leonard D, Masedunskas A, Moyer A, Jurgensen HJ, Peters DE et al (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202(6):951–966 ArticlePubMed CentralPubMedCAS Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909 ArticlePubMedCAS Google Scholar
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211 ArticlePubMed Google Scholar
Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48 ArticlePubMed CentralPubMedCAS Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047 ArticlePubMedCAS Google Scholar
Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. CSH Perspect Med 2(1)
Sanchez-Guajardo V, Barnum CJ, Tansey MG, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to alpha-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neurol 5(2):113–139 ArticleCAS Google Scholar
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542 ArticlePubMedCAS Google Scholar
Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK et al (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185(1):615–623 ArticlePubMedCAS Google Scholar
Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B et al (2007) Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia 55(11):1178–1188 ArticlePubMed Google Scholar
Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P et al (2008) Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol 3(2):59–74 ArticlePubMed CentralPubMed Google Scholar
Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698 ArticlePubMed CentralPubMedCAS Google Scholar
Rojanathammanee L, Murphy EJ, Combs CK (2011) Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflamm 8:44 ArticleCAS Google Scholar
Austin SA, Floden AM, Murphy EJ, Combs CK (2006) Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci 26(41):10558–10563 ArticlePubMedCAS Google Scholar
Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s disease in primates: the MPTP model. CSH Perspect Med 2(3)
Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150 ArticlePubMed CentralPubMedCAS Google Scholar
Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF et al (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18(3):589–591 PubMedCAS Google Scholar
Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5(12):1403–1409 ArticlePubMedCAS Google Scholar
Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297 ArticlePubMedCAS Google Scholar
Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67(12):1149–1158 ArticlePubMed CentralPubMedCAS Google Scholar
Zhang H, Li Y, Yu J, Guo M, Meng J, Liu C et al (2013) Rho kinase inhibitor fasudil regulates microglia polarization and function. Neuroimmunomodulat 20(6):313–322 CAS Google Scholar
Citron M, Oltersdorf T, Haass C, Mcconlogue L, Hung AY, Seubert P et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s-disease increases beta-protein production. Nature 360(6405):672–674 ArticlePubMedCAS Google Scholar
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724 ArticlePubMed CentralPubMedCAS Google Scholar
Maezawa I, Zimin PI, Wulff H, Jin LW (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 286(5):3693–3706 ArticlePubMed CentralPubMedCAS Google Scholar
Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 79(3):596–610 ArticlePubMedCAS Google Scholar
Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R et al (2010) Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285(51):40180–40191 ArticlePubMed CentralPubMedCAS Google Scholar
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774 ArticlePubMed CentralPubMedCAS Google Scholar
Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28(45):11650–11661 ArticlePubMedCAS Google Scholar
Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25(36):8240–8249 ArticlePubMedCAS Google Scholar
Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210(1–2):3–12 ArticlePubMedCAS Google Scholar
Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H et al (2006) Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 103(31):11784–11789 ArticlePubMed CentralPubMedCAS Google Scholar
Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA (2007) IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem 101(3):771–781 ArticlePubMedCAS Google Scholar
Iribarren P, Chen K, Hu J, Zhang X, Gong W, Wang JM (2005) IL-4 inhibits the expression of mouse formyl peptide receptor 2, a receptor for amyloid beta1-42, in TNF-alpha-activated microglia. J Immunol 175(9):6100–6106 ArticlePubMedCAS Google Scholar
Tichauer JE, von Bernhardi R (2012) Transforming growth factor-beta stimulates beta amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90(10):1970–1980 ArticlePubMedCAS Google Scholar
Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K et al (2005) Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med 202(9):1163–1169 ArticlePubMed CentralPubMedCAS Google Scholar
Herber DL, Mercer M, Roth LM, Symmonds K, Maloney J, Wilson N et al (2007) Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol 2(2):222–231 ArticlePubMed Google Scholar
Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D et al (2004) Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 190(1):245–253 ArticlePubMedCAS Google Scholar
DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D (2001) Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging 22(6):1007–1012 ArticlePubMedCAS Google Scholar
Wilcock DM, Lewis MR, Van Nostrand WE, Davis J, Previti ML, Gharkholonarehe N et al (2008) Progression of amyloid pathology to Alzheimer’s disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci 28(7):1537–1545 ArticlePubMed CentralPubMedCAS Google Scholar
Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE et al (2010) IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol 184(9):5333–5343 ArticlePubMed CentralPubMedCAS Google Scholar
Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C et al (2010) Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J 24(2):548–559 ArticlePubMed CentralPubMedCAS Google Scholar
Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE (2011) Hippocampal expression of murine TNFalpha results in attenuation of amyloid deposition in vivo. Mol Neurodegener 6:16 ArticlePubMed CentralPubMedCAS Google Scholar
Kawahara K, Suenobu M, Yoshida A, Koga K, Hyodo A, Ohtsuka H et al (2012) Intracerebral microinjection of interleukin-4/interleukin-13 reduces beta-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 207:243–260 ArticlePubMedCAS Google Scholar
Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP + PS1 bigenic mice. FASEB J 24(8):3093–3102 ArticlePubMed CentralPubMedCAS Google Scholar
Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP + PS1 mice. Gene Ther 19(7):724–733 ArticlePubMed CentralPubMedCAS Google Scholar
Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE (2012) Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener 7:36 ArticlePubMed CentralPubMedCAS Google Scholar
Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70(3):462–473 ArticlePubMedCAS Google Scholar
Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101(7):2173–2178 ArticlePubMed CentralPubMedCAS Google Scholar
Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP et al (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol 179(3):1373–1384 ArticlePubMed CentralPubMed Google Scholar
Ikeda M, Shoji M, Kawarai T, Kawarabayashi T, Matsubara E, Murakami T et al (2005) Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice. Am J Pathol 166(2):521–531 ArticlePubMed CentralPubMedCAS Google Scholar
Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol 209(1–2):16–25 ArticlePubMedCAS Google Scholar
Kovac A, Zilka N, Kazmerova Z, Cente M, Zilkova M, Novak M (2011) Misfolded truncated protein tau induces innate immune response via MAPK pathway. J Immunol 187(5):2732–2739 ArticlePubMedCAS Google Scholar
Sasaki A, Kawarabayashi T, Murakami T, Matsubara E, Ikeda M, Hagiwara H et al (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168 ArticlePubMedCAS Google Scholar
Morales I, Jimenez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis 37(4):849–856 PubMedCAS Google Scholar
Zilka N, Kazmerova Z, Jadhav S, Neradil P, Madari A, Obetkova D et al (2012) Who fans the flames of Alzheimer’s disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J Neuroinflamm 9:47 ArticleCAS Google Scholar
Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68(1):19–31 ArticlePubMed CentralPubMedCAS Google Scholar
Wes PD, Easton A, Corradi J, Barten DM, Devidze N, DeCarr LB et al (2014) Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer’s disease. PLoS One 9(8):e106050 ArticlePubMed CentralPubMedCAS Google Scholar
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351 ArticlePubMedCAS Google Scholar
Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491 ArticlePubMedCAS Google Scholar
Asai H, Ikezu S, Woodbury ME, Yonemoto GM, Cui L, Ikezu T (2014) Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. Am J Pathol 184(3):808–818 ArticlePubMed CentralPubMedCAS Google Scholar
Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59 ArticlePubMedCAS Google Scholar
Appel SH, Beers DR, Henkel JS (2010) T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31(1):7–17 ArticlePubMed CentralPubMedCAS Google Scholar
Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J et al (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447 ArticlePubMed CentralPubMedCAS Google Scholar
Huang C, Tong J, Bi F, Zhou H, Xia XG (2012) Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 122(1):107–118 ArticlePubMed CentralPubMedCAS Google Scholar
Henkel JS, Beers DR, Zhao WH, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharm 4(4):389–398 Article Google Scholar
Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263 ArticlePubMedCAS Google Scholar
Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS et al (2007) Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102(6):2008–2019 ArticlePubMedCAS Google Scholar
Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392 ArticlePubMedCAS Google Scholar
Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021–16026 ArticlePubMed CentralPubMedCAS Google Scholar
Beers DR, Henkel JS, Zhao W, Wang J, Appel SH (2008) CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 105(40):15558–15563 ArticlePubMed CentralPubMedCAS Google Scholar
Hensley K, Fedynyshyn J, Ferrell S, Floyd RA, Gordon B, Grammas P et al (2003) Message and protein-level elevation of tumor necrosis factor alpha (TNF alpha) and TNF alpha-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis 14(1):74–80 ArticlePubMedCAS Google Scholar
Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152 ArticlePubMed CentralPubMedCAS Google Scholar
Kawamura MF, Yamasaki R, Kawamura N, Tateishi T, Nagara Y, Matsushita T et al (2012) Impaired recruitment of neuroprotective microglia and T cells during acute neuronal injury coincides with increased neuronal vulnerability in an amyotrophic lateral sclerosis model. Exp Neurol 234(2):437–445 ArticlePubMedCAS Google Scholar
Marden JJ, Harraz MM, Williams AJ, Nelson K, Luo M, Paulson H et al (2007) Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest 117(10):2913–2919 ArticlePubMed CentralPubMedCAS Google Scholar
Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ et al (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023 ArticlePubMed CentralPubMedCAS Google Scholar
Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525 ArticlePubMed CentralPubMedCAS Google Scholar
Lewis KE, Rasmussen AL, Bennett W, King A, West AK, Chung RS et al (2014) Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: changes in arginase1 and inducible nitric oxide synthase. J Neuroinflamm 11:55 ArticleCAS Google Scholar
Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B et al (2014) Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflamm 11(1):161 ArticleCAS Google Scholar
Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118(4):475–485 ArticlePubMed CentralPubMed Google Scholar
Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297 ArticlePubMedCAS Google Scholar
Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95(3):229–234 ArticlePubMedCAS Google Scholar
Ye SM, Johnson RW (1999) Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93(1–2):139–148 ArticlePubMedCAS Google Scholar
Ye SM, Johnson RW (2001) An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulat 9(4):183–192 ArticleCAS Google Scholar
Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS et al (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964(2):288–294 ArticlePubMedCAS Google Scholar
Lee DC, Ruiz CR, Lebson L, Selenica MLB, Rizer J, Hunt JB et al (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34(6):1610–1620 ArticlePubMed CentralPubMedCAS Google Scholar
Bachstetter AD, Norris CM, Sompol P, Wilcock DM, Goulding D, Neltner JH et al (2012) Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer’s disease-related pathology. J Neurosci 32(30):10201–10210 ArticlePubMed CentralPubMedCAS Google Scholar
Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW et al (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167(11):6533–6544 ArticlePubMedCAS Google Scholar
Horowitz S, Binion DG, Nelson VM, Kanaa Y, Javadi P, Lazarova Z et al (2007) Increased arginase activity and endothelial dysfunction in human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 292(5):G1323–G1336 ArticlePubMedCAS Google Scholar
Ding H, Demple B (2000) Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci U S A 97(10):5146–5150