Ibrahim L, DiazGranados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, et al. A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32:551–7. https://doi.org/10.1097/JCP.0b013e31825d70d6. ArticleCASPubMedPubMed Central Google Scholar
Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized placebo-controlled study. Neuropsychopharmacology. 2017;42:844–53. https://doi.org/10.1038/npp.2016.224. ArticleCASPubMed Google Scholar
Alitalo O, Saarreharju R, Zarate CA, Kohtala S, Rantamaki T. A wake-up call—revealing the oversight of sleep physiology and related translational discrepancies in studies of rapid-acting antidepressants. MedRxiv. 2020. https://doi.org/10.1101/2020.09.29.20204008. Article Google Scholar
Mathew SJ, Zarate CA. Ketamine for treatment-resistant depression. Cham: Springer International Publishing; 2016. Book Google Scholar
Adams JD, Baillie TA, Trevor AJ, Castagnoli N. Studies on the biotransformation of ketamine 1—identification of metabolites produced in vitro from rat liver microsomal preparations. Biomed Mass Spectrom. 1981;8:527–38. https://doi.org/10.1002/bms.1200081103. ArticleCASPubMed Google Scholar
Portmann S, Kwan HY, Theurillat R, Schmitz A, Mevissen M, Thormann W. Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro. J Chromatogr A. 2010;1217:7942–8. https://doi.org/10.1016/j.chroma.2010.06.028. ArticleCASPubMed Google Scholar
Guldner GT, Petinaux B, Clemens P, Foster S, Antoine S. Ketamine for procedural sedation and analgesia by nonanesthesiologists in the field: a review for military health care providers. Mil Med. 2006;171:484–90. https://doi.org/10.7205/MILMED.171.6.484. ArticlePubMed Google Scholar
Motov S, Rockoff B, Cohen V, Pushkar I, Likourezos A, McKay C, et al. Intravenous subdissociative-dose ketamine versus morphine for analgesia in the emergency department: a randomized controlled trial. Ann Emerg Med. 2015;66:222–9. https://doi.org/10.1016/j.annemergmed.2015.03.004. ArticlePubMed Google Scholar
Eichenberger U, Neff F, Sveticic G, Björgo S, Petersen-Felix S, Arendt-Nielsen L, et al. Chronic phantom limb pain: the effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesth Analg. 2008;106:1265–73. https://doi.org/10.1213/ane.0b013e3181685014. ArticleCASPubMed Google Scholar
Wolfson PE. Psychedelic experiential pharmacology pioneering clinical explorations with salvador roquet (how I came to all of this: ketamine, admixtures and adjuvants, don juan and carlos castaneda too): an interview with Richard Yensen. Int J Transpers Stud. 2014;33:160–74. https://doi.org/10.24972/ijts.2014.33.2.160. Article Google Scholar
Schönenberg M, Reichwald U, Domes G, Badke A, Hautzinger M. Effects of peritraumatic ketamine medication on early and sustained posttraumatic stress symptoms in moderately injured accident victims. Psychopharmacology. 2005;182:420–5. https://doi.org/10.1007/s00213-005-0094-4. ArticleCASPubMed Google Scholar
Highland KB, Soumoff AA, Spinks EA, Kemezis PA, Buckenmaier CC. Ketamine administration during hospitalization is not associated with posttraumatic stress disorder outcomes in military combat casualties. Anesth Analg. 2020;130:402–8. https://doi.org/10.1213/ANE.0000000000004327. ArticlePubMed Google Scholar
McKendrick G, Garrett H, Jones HE, McDevitt DS, Sharma S, Silberman Y, et al. Ketamine blocks morphine-induced conditioned place preference and anxiety-like behaviors in mice. Front Behav Neurosci. 2020;14:1–13. https://doi.org/10.3389/fnbeh.2020.00075. ArticleCAS Google Scholar
Dakwar E, Levin F, Hart CL, Basaraba C, Choi J, Pavlicova M, et al. A single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: a randomized midazolam-controlled pilot trial. Am J Psychiatry. 2020;177:125–33. https://doi.org/10.1176/appi.ajp.2019.19070684. ArticlePubMed Google Scholar
Dakwar E, Nunes EV, Hart CL, Foltin RW, Mathew SJ, Carpenter KM, et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: a randomized clinical trial. Am J Psychiatry. 2019;176:923–30. https://doi.org/10.1176/appi.ajp.2019.18101123. ArticlePubMed Google Scholar
Chen M-H, Lin W-C, Tu P-C, Li C-T, Bai Y-M, Tsai S-J, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord. 2019;259:15–20. https://doi.org/10.1016/j.jad.2019.08.022. ArticleCASPubMed Google Scholar
Arabzadeh S, Hakkikazazi E, Shahmansouri N, Tafakhori A, Ghajar A, Jafarinia M, et al. Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double-blind controlled trial. J Affect Disord. 2018;235:236–41. https://doi.org/10.1016/j.jad.2018.02.056. ArticleCASPubMed Google Scholar
Domany Y, Bleich-Cohen M, Tarrasch R, Meidan R, Litvak-Lazar O, Stoppleman N, et al. Repeated oral ketamine for out-patient treatment of resistant depression: randomised, double-blind, placebo-controlled, proof-of-concept study. Br J Psychiatry. 2019;214:20–6. https://doi.org/10.1192/bjp.2018.196. ArticlePubMed Google Scholar
Ballard ED, Ionescu DF, Vande Voort JL, Niciu MJ, Richards EM, Luckenbaugh DA, et al. Improvement in suicidal ideation after ketamine infusion: relationship to reductions in depression and anxiety. J Psychiatr Res. 2014;58:161–6. https://doi.org/10.1016/j.jpsychires.2014.07.027. ArticlePubMed Google Scholar
Shiroma PR, Thuras P, Wels J, Albott CS, Erbes C, Tye S, et al. A randomized, double-blind, active placebo-controlled study of efficacy, safety, and durability of repeated vs single subanesthetic ketamine for treatment-resistant depression. Transl Psychiatry. 2020;10:206. https://doi.org/10.1038/s41398-020-00897-0. ArticleCASPubMedPubMed Central Google Scholar
Vidal S, Gex-Fabry M, Bancila V, Michalopoulos G, Warrot D, Jermann F, et al. Efficacy and safety of a rapid intravenous injection of ketamine 0.5 mg/kg in treatment-resistant major depression: an open 4-week longitudinal study. J Clin Psychopharmacol. 2018;38:590–7. https://doi.org/10.1097/JCP.0000000000000960. ArticleCASPubMed Google Scholar
Loo CK, Gálvez V, O’Keefe E, Mitchell PB, Hadzi-Pavlovic D, Leyden J, et al. Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatr Scand. 2016;134:48–56. https://doi.org/10.1111/acps.12572. ArticleCASPubMed Google Scholar
Xu Y, Hackett M, Carter G, Loo C, Gálvez V, Glozier N, et al. Effects of low-dose and very low-dose ketamine among patients with major depression: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2016;19:1–15. https://doi.org/10.1093/ijnp/pyv124. Article Google Scholar
Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020;25:1592–603. https://doi.org/10.1038/s41380-018-0256-5. ArticleCASPubMed Google Scholar
Correia-Melo FS, Leal GC, Vieira F, Jesus-Nunes AP, Mello RP, Magnavita G, et al. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: a randomized, double-blind, non-inferiority study. J Affect Disord. 2020;264:527–34. https://doi.org/10.1016/j.jad.2019.11.086. ArticleCASPubMed Google Scholar
Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, et al. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2016;80:424–31. https://doi.org/10.1016/j.biopsych.2015.10.018. ArticleCASPubMed Google Scholar
Ochs-Ross R, Daly EJ, Zhang Y, Lane R, Lim P, Morrison RL, et al. Efficacy and safety of esketamine nasal spray plus an oral antidepressant in elderly patients with treatment-resistant depression—TRANSFORM-3. Am J Geriatr Psychiatry. 2020;28:121–41. https://doi.org/10.1016/j.jagp.2019.10.008. ArticlePubMed Google Scholar
Fedgchin M, Trivedi M, Daly EJ, Melkote R, Lane R, Lim P, et al. Efficacy and safety of fixed-dose esketamine nasal spray combined with a new oral antidepressant in treatment-resistant depression: results of a randomized, double-blind, active-controlled study (TRANSFORM-1). Int J Neuropsychopharmacol. 2019;22:616–30. https://doi.org/10.1093/ijnp/pyz039. ArticlePubMedPubMed Central Google Scholar
Gálvez V, Li A, Huggins C, Glue P, Martin D, Somogyi AA, et al. Repeated intranasal ketamine for treatment-resistant depression—the way to go? Results from a pilot randomised controlled trial. J Psychopharmacol. 2018. https://doi.org/10.1177/0269881118760660. ArticlePubMed Google Scholar
Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P, et al. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. Am J Psychiatry. 2018;175:620–30. https://doi.org/10.1176/appi.ajp.2018.17060720. ArticlePubMed Google Scholar
Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176:428–38. https://doi.org/10.1176/appi.ajp.2019.19020172. ArticlePubMed Google Scholar
Dore J, Turnipseed B, Dwyer S, Turnipseed A, Andries J, Ascani G, et al. Ketamine assisted psychotherapy (KAP): patient demographics, clinical data and outcomes in three large practices administering ketamine with psychotherapy. J Psychoactive Drugs. 2019;51:189–98. https://doi.org/10.1080/02791072.2019.1587556. ArticlePubMed Google Scholar
Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenice T. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuroendocrinol Lett. 2013;34:287–93. CASPubMed Google Scholar
Valentine GW, Mason GF, Gomez R, Fasula M, Watzl J, Pittman B, et al. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [1H]-MRS. Psychiatry Res Neuroimaging. 2011;191:122–7. https://doi.org/10.1016/j.pscychresns.2010.10.009. ArticleCAS Google Scholar
Stocker K, Hasler G, Hartmann M. The altered-state-of-consciousness aspect of a feeling of lightness is reported to be associated with antidepressant benefits by depressed individuals receiving ketamine infusions: a systematic analysis of internet video testimonials. Psychother Psychosom. 2019;88:182–3. https://doi.org/10.1159/000497441. ArticlePubMed Google Scholar
Acevedo-Diaz EE, Cavanaugh GW, Greenstein D, Kraus C, Kadriu B, Park L, et al. Can ‘floating’ predict treatment response to ketamine? Data from three randomized trials of individuals with treatment-resistant depression. J Psychiatr Res. 2020;130:280–5. https://doi.org/10.1016/j.jpsychires.2020.06.012. ArticlePubMed Google Scholar
Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry. 1996;29:23–6. https://doi.org/10.1055/s-2007-979537. ArticleCASPubMed Google Scholar
Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, et al. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology. 2015;232:4325–35. https://doi.org/10.1007/s00213-015-4062-3. ArticleCASPubMed Google Scholar
Miller OH, Yang L, Wang C-C, Hargroder EA, Zhang Y, Delpire E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife. 2014;3:1–22. https://doi.org/10.7554/eLife.03581. Article Google Scholar
Chowdhury GMI, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry. 2017;22:120–6. https://doi.org/10.1038/mp.2016.34. ArticleCASPubMed Google Scholar
Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52. https://doi.org/10.1016/j.biopsych.2007.05.028. ArticleCASPubMed Google Scholar
Fukumoto K, Fogaça MV, Liu R-J, Duman C, Kato T, Li X-Y, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 R,6 R )-hydroxynorketamine. Proc Natl Acad Sci. 2019;116:297–302. https://doi.org/10.1073/pnas.1814709116. ArticleCASPubMed Google Scholar
Kohtala S, Theilmann W, Rosenholm M, Müller HK, Kiuru P, Wegener G, et al. Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites. Neuropharmacology. 2019;157:107684. https://doi.org/10.1016/j.neuropharm.2019.107684. ArticleCASPubMed Google Scholar
Kohtala S, Theilmann W, Rosenholm M, Penna L, Karabulut G, Uusitalo S, et al. Cortical excitability and activation of TrkB signaling during rebound slow oscillations are critical for rapid antidepressant responses. Mol Neurobiol. 2019;56:4163–74. https://doi.org/10.1007/s12035-018-1364-6. ArticleCASPubMed Google Scholar
Beurel E, Grieco SF, Amadei C, Downey K, Jope RS. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling. Bipolar Disord. 2016;18:473–80. https://doi.org/10.1111/bdi.12436. ArticleCASPubMedPubMed Central Google Scholar
Leikas JV, Kohtala S, Theilmann W, Jalkanen AJ, Forsberg MM, Rantamäki T. Brief isoflurane anesthesia regulates striatal AKT-GSK3β signaling and ameliorates motor deficits in a rat model of early-stage Parkinson′s disease. J Neurochem. 2017;142:456–63. https://doi.org/10.1111/jnc.14066. ArticleCASPubMedPubMed Central Google Scholar
De Bartolomeis A, Sarappa C, Buonaguro EF, Marmo F, Eramo A, Tomasetti C, et al. Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of Homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;46:1–12. https://doi.org/10.1016/j.pnpbp.2013.06.010. ArticleCAS Google Scholar
Holz A, Mülsch F, Schwarz MK, Hollmann M, Döbrössy MD, Coenen VA, et al. Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation. Neuron. 2019;104(338–352):e7. https://doi.org/10.1016/j.neuron.2019.07.011. ArticleCAS Google Scholar
Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci. 2015;112:8106–11. https://doi.org/10.1073/pnas.1414728112. ArticleCASPubMed Google Scholar
Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154:805–11. https://doi.org/10.1176/ajp.154.6.805. ArticleCASPubMed Google Scholar
Li C-T, Chen M-H, Lin W-C, Hong C-J, Yang B-H, Liu R-S, et al. The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: a randomized controlled study. Hum Brain Mapp. 2016;37:1080–90. https://doi.org/10.1002/hbm.23085. ArticlePubMedPubMed Central Google Scholar
Maksimow A, Särkelä M, Långsjö JW, Salmi E, Kaisti KK, Yli-Hankala A, et al. Increase in high frequency EEG activity explains the poor performance of EEG spectral entropy monitor during S-ketamine anesthesia. Clin Neurophysiol. 2006;117:1660–8. https://doi.org/10.1016/j.clinph.2006.05.011. ArticleCASPubMed Google Scholar
Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17:537–48. https://doi.org/10.1038/mp.2011.31. ArticleCASPubMed Google Scholar
Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand D, et al. The effects of electroconvulsive therapy on quantitative electroencephalograms. Relationship to clinical outcome. Arch Gen Psychiatry. 1996;53:814–24. https://doi.org/10.1017/CBO9781107415324.004. ArticleCASPubMed Google Scholar
Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156:675–82. https://doi.org/10.1176/ajp.156.5.675. ArticleCASPubMed Google Scholar
Carlson PJ, Diazgranados N, Nugent AC, Ibrahim L, Luckenbaugh DA, Brutsche N, et al. Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry. 2013;73:1213–21. https://doi.org/10.1016/j.biopsych.2013.02.008. ArticleCASPubMedPubMed Central Google Scholar
Nugent AC, Diazgranados N, Carlson PJ, Ibrahim L, Luckenbaugh DA, Brutsche N, et al. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord. 2014;16:119–28. https://doi.org/10.1111/bdi.12118. ArticleCASPubMed Google Scholar
Abdallah CG, Dutta A, Averill CL, McKie S, Akiki TJ, Averill LA, et al. Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients. Chronic Stress. 2018;2:247054701879610. https://doi.org/10.1177/2470547018796102. Article Google Scholar
Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA. Effects of ketamine on brain activity during emotional processing: differential findings in depressed versus healthy control participants. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:610–8. https://doi.org/10.1016/j.bpsc.2019.01.005. ArticlePubMedPubMed Central Google Scholar
Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, et al. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology. 2020;45:1398–404. https://doi.org/10.1038/s41386-020-0663-6. ArticleCASPubMed Google Scholar