Biological studies of post-traumatic stress disorder (original) (raw)
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 3rd edn (American Psychiatric Association, 1980).
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Press, 2000).
Dobbs, D. & Wilson, W. P. Observations on persistence of war neurosis. Dis. Nerv. Syst.21, 686–691 (1960). CASPubMed Google Scholar
Orr, S. P., Metzger, L. J., Miller, M. W. & Kaloupek, D. G. in Assessing Psychological Trauma and PTSD: A Handbook for Practicioners 2nd edn (eds Wilson, J. P. & Keane, T. M.) 289–343 (Guilford Publications, 2004). Google Scholar
Metzger, L. J., Gilbertson, M. W. & Orr, S. P. in Neuropsychology of PTSD: Biological, Clinical, and Cognitive Perspectives (eds Vasterling, J. & Brewin, C.) 83–102 (Guilford Publications, 2005). Google Scholar
Pole, N. The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychol. Bull.133, 725–746 (2007). A comprehensive review and meta-analysis of the most important psychophysiological research in PTSD as of that date. ArticlePubMed Google Scholar
Keane, T. M. et al. Utility of psychophysiological measurement in the diagnosis of posttraumatic stress disorder: results from a Department of Veterans Affairs Cooperative Study. J. Consult. Clin. Psychol.66, 914–923 (1998). ArticleCASPubMed Google Scholar
Pitman, R. K., Orr, S. P., Forgue, D. F., de Jong, J. B. & Claiborn, J. M. Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch. Gen. Psychiatry44, 970–975 (1987). This study introduced a novel symptom provocation technique for PTSD that has come into widespread psychophysiologic, neuroimaging and other research use. ArticleCASPubMed Google Scholar
Blanchard, E. B. et al. Psychophysiology of posttraumatic stress disorder related to motor vehicle accidents: replication and extension. J. Consult Clin. Psychol.64, 742–751 (1996). ArticleCASPubMed Google Scholar
Kleim, B., Wilhelm, F. H., Glucksman, E. & Ehlers, A. Sex differences in heart rate responses to script-driven imagery soon after trauma and risk of posttraumatic stress disorder. Psychosom. Med.72, 917–924 (2010). ArticlePubMedPubMed Central Google Scholar
Orr, S. P. et al. Physiologic responses to sudden, loud tones in monozygotic twins discordant for combat exposure: association with posttraumatic stress disorder. Arch. Gen. Psychiatry60, 283–288 (2003). ArticlePubMed Google Scholar
Shalev, A. Y. et al. Auditory startle response in trauma survivors with posttraumatic stress disorder: a prospective study. Am. J. Psychiatry157, 255–261 (2000). ArticleCASPubMed Google Scholar
Pitman, R. K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry51, 189–192 (2002). ArticleCASPubMed Google Scholar
Griffin, M. G., Resick, P. A. & Galovski, T. E. Does physiologic response to loud tones change following cognitive-behavioral treatment for posttraumatic stress disorder? J. Trauma Stress.25, 25–32 (2012). ArticlePubMedPubMed Central Google Scholar
Peri, T., Ben-Shakhar, G., Orr, S. P. & Shalev, A. Y. Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol. Psychiatry47, 512–519 (2000). ArticleCASPubMed Google Scholar
Blechert, J., Michael, T., Vriends, N., Margraf, J. & Wilhelm, F. H. Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav. Res. Ther.45, 2019–2033 (2007). ArticlePubMed Google Scholar
Lissek, S. & Grillon, C. in The Oxford Handbook of Traumatic Stress Disorders (eds Beck, J. G. & Sloan, D. M.) 175–190 (Oxford Univ. Press, 2012). Google Scholar
Wessa, M. & Flor, H. Failure of extinction of fear responses in posttraumatic stress disorder: evidence from second-order conditioning. Am. J. Psychiatry164, 1684–1692 (2007). ArticlePubMed Google Scholar
Milad, M. R. et al. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J. Psychiatr. Res.42, 515–520 (2008). ArticlePubMedPubMed Central Google Scholar
Metzger, L. J., Pitman, R. K., Miller, G. A., Paige, S. R. & Orr, S. P. Intensity dependence of auditory P2 in monozygotic twins discordant for Vietnam combat: associations with posttraumatic stress disorder. J. Rehabil. Res. Dev.45, 437–449 (2008). ArticlePubMedPubMed Central Google Scholar
Grillon, C. & Morgan, C. A. Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with posttraumatic stress disorder. J. Abnorm. Psychol.108, 134–142 (1999). ArticleCASPubMed Google Scholar
Griffin, M. G. A prospective assessment of auditory startle alterations in rape and physical assault survivors. J. Trauma. Stress21, 91–99 (2008). ArticlePubMed Google Scholar
Buhlmann, U. et al. Physiologic responses to loud tones in individuals with obsessive-compulsive disorder. Psychosom. Med.69, 166–172 (2007). ArticlePubMed Google Scholar
Guthrie, R. M. & Bryant, R. A. Auditory startle response in firefighters before and after trauma exposure. Am. J. Psychiatry162, 283–290 (2005). ArticlePubMed Google Scholar
Guthrie, R. M. & Bryant, R. A. Extinction learning before trauma and subsequent posttraumatic stress. Psychosom. Med.68, 307–311 (2006). ArticlePubMed Google Scholar
Orr, S. P. et al. Predicting post-trauma stress symptoms from pre-trauma psychophysiologic reactivity, personality traits and measures of psychopathology. Biol. Mood Anxiety Disord.2, 8 (2012). ArticlePubMedPubMed Central Google Scholar
O'Donnell, M. L., Creamer, M., Elliott, P. & Bryant, R. Tonic and phasic heart rate as predictors of posttraumatic stress disorder. Psychosom. Med.69, 256–261 (2007). ArticlePubMed Google Scholar
Suendermann, O., Ehlers, A., Boellinghaus, I., Gamer, M. & Glucksman, E. Early heart rate responses to standardized trauma-related pictures predict posttraumatic stress disorder: a prospective study. Psychosom. Med.72, 301–308 (2010). ArticlePubMedPubMed Central Google Scholar
Shalev, A. Y. et al. A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder. Arch. Gen. Psychiatry55, 553–559 (1998). ArticleCASPubMed Google Scholar
Kobayashi, I., Boarts, J. M. & Delahanty, D. L. Polysomnographically measured sleep abnormalities in PTSD: a meta-analytic review. Psychophysiology44, 660–669 (2007). ArticlePubMed Google Scholar
Sapolsky, R. M., Uno, H., Rebert, C. S. & Finch, C. E. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J. Neurosci.10, 2897–2902 (1990). ArticleCASPubMedPubMed Central Google Scholar
Bremner, J. D. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry152, 973–981 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gurvits, T. V. et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry40, 1091–1099 (1996). ArticleCASPubMedPubMed Central Google Scholar
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G. & McClarty, B. Hippocampal volume in women victimized by childhood sexual abuse. Psychol. Med.27, 951–959 (1997). ArticleCASPubMed Google Scholar
Kitayama, N., Vaccarino, V., Kutner, M., Weiss, P. & Bremner, J. D. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J. Affect. Disord.88, 79–86 (2005). ArticlePubMed Google Scholar
Wang, Z. et al. Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch. Gen. Psychiatry67, 296–303 (2010). This was the first study in humans to use high-resolution sMRI to determine more specific volume diminutions within selected hippocampal subfields and to delineate those regions specific to PTSD versus ageing effects. ArticlePubMedPubMed Central Google Scholar
Smith, M. E. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus15, 798–807 (2005). ArticlePubMed Google Scholar
Karl, A. et al. A meta-analysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Rev.30, 1004–1031 (2006). ArticlePubMed Google Scholar
Woon, F. & Hedges, D. W. Gender does not moderate hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Hippocampus21, 243–252 (2011). ArticlePubMed Google Scholar
Gilbertson, M. W. et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neurosci.5, 1242–1247 (2002). This study used data from monozygotic twins discordant for combat exposure and PTSD to suggest that smaller hippocampal volume in PTSD represents a pre-existing vulnerability factor. ArticleCASPubMed Google Scholar
Fennema-Notestine, C. Stein, M. B., Kennedy, C. M., Archibald, S. L. & Jernigan, T. L. Brain morphometry in female victims of intimate partner violence with and without posttraumatic stress disorder. Biol. Psychiatry52, 1089–1101 (2002). ArticlePubMed Google Scholar
De Bellis, M. D., Hall, J., Boring, A. M., Frustaci, K. & Moritz, G. A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol. Psychiatry50, 305–309 (2001). ArticleCASPubMed Google Scholar
Emdad, R. et al. Morphometric and psychometric comparisons between non-substance-abusing patients with posttraumatic stress disorder and normal controls. Psychother. Psychosom.75, 122–132 (2006). ArticlePubMed Google Scholar
Bonne, O. et al. Reduced posterior hippocampal volume in posttraumatic stress disorder. J. Clin. Psychiatry69, 1087–1091 (2008). ArticlePubMedPubMed Central Google Scholar
Schuff, N. et al. Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res.162, 147–157 (2008). ArticleCASPubMedPubMed Central Google Scholar
Karl, A. & Werner, A. The use of proton magnetic resonance spectroscopy in PTSD research — meta-analyses of findings and methodological review. Neurosci. Biobehav. Rev.34, 7–22 (2010). ArticlePubMed Google Scholar
Myslobodsky, M. S. et al. Changes of brain anatomy in patients with posttraumatic stress disorder: a pilot magnetic resonance imaging study. Psychiatry Res.58, 259–264 (1995). ArticleCASPubMed Google Scholar
Bremner, J. D. Hypotheses and controversies related to effects of stress on the hippocampus: an argument for stress-induced damage to the hippocampus in patients with posttraumatic stress disorder. Hippocampus11, 75–81 (2001). ArticleCASPubMed Google Scholar
Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S. & Bremner, J. D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psychiatry54, 693–702 (2003). ArticleCASPubMedPubMed Central Google Scholar
Woon, F. L., Sood, S. & Hedges, D. W. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry34, 1181–1188 (2010). ArticlePubMed Google Scholar
Kasai, K. et al. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol. Psychiatry63, 550–556 (2008). ArticlePubMed Google Scholar
Kitayama, N., Quinn, S. & Bremner, J. D. Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. J. Affect. Disord.90, 171–174 (2006). ArticlePubMedPubMed Central Google Scholar
Carrion, V. G., Weems, C. F., Richert, K., Hoffman, B. C. & Reiss, A. L. Decreased prefrontal cortical volume associated with increased bedtime cortisol in traumatized youth. Biol. Psychiatry68, 491–493 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. J. et al. Asymmetrically altered integrity of cingulum bundle in posttraumatic stress disorder. Neuropsychobiology54, 120–125 (2006). ArticlePubMed Google Scholar
Sekiguchi, A. et al. Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress. Mol. Psychiatry 22 May 2012 (doi:10.1038/mp.2012.51).
Morrow, B. A., Elsworth, J. D., Rasmusson, A. M. & Roth, R. H. The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience92, 553–564 (1999). ArticleCASPubMed Google Scholar
Herry, C. et al. Neuronal circuits of fear extinction. Eur. J. Neurosci.31, 599–612 (2010). ArticlePubMed Google Scholar
Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol.63, 129–151 (2012). ArticlePubMedPubMed Central Google Scholar
Liberzon, I. et al. Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry45, 817–826 (1999). ArticleCASPubMed Google Scholar
Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry164, 1476–1488 (2007). ArticlePubMedPubMed Central Google Scholar
Bremner, J. D. et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol. Med.35, 791–806 (2005). ArticlePubMedPubMed Central Google Scholar
Shin, L. M. et al. Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am. J. Psychiatry156, 575–584 (1999). CASPubMed Google Scholar
Gold, A. L. et al. Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychol. Med.41, 2563–2572 (2011). ArticleCASPubMed Google Scholar
Felmingham, K. et al. Neural responses to masked fear faces: sex differences and trauma exposure in posttraumatic stress disorder. J. Abnorm. Psychol.119, 241–247 (2010). ArticlePubMed Google Scholar
Shin, L. M. et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch. Gen. Psychiatry61, 168–176 (2004). ArticlePubMed Google Scholar
Felmingham, K. et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol. Sci.18, 127–129 (2007). This article used fMRI to reveal functional brain changes in response to cognitive behavioural therapy in PTSD. ArticlePubMed Google Scholar
Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry66, 1075–1082 (2009). ArticlePubMedPubMed Central Google Scholar
Shin, L. M. et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol. Psychiatry50, 932–942 (2001). ArticleCASPubMed Google Scholar
Rougemont-Bucking, A. et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci. Ther.17, 227–236 (2011). ArticlePubMed Google Scholar
Bryant, R. A. et al. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol. Psychiatry58, 111–118 (2005). ArticlePubMed Google Scholar
Pannu, H. J., Labar, K. S., Petty, C. M., McCarthy, G. & Morey, R. A. Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res.172, 7–15 (2009). Article Google Scholar
Fonzo, G. A. et al. Exaggerated and disconnected insular–amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol. Psychiatry68, 433–441 (2010). ArticlePubMedPubMed Central Google Scholar
Shin, L. M. et al. Resting metabolic activity in the cingulate cortex and vulnerability to posttraumatic stress disorder. Arch. Gen. Psychiatry66, 1099–1107 (2009). ArticlePubMedPubMed Central Google Scholar
Shin, L. M. et al. Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: a monozygotic twin study of posttraumatic stress disorder. Am. J. Psychiatry168, 979–985 (2011). ArticlePubMedPubMed Central Google Scholar
Bremner, J. D. et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am. J. Psychiatry160, 924–932 (2003). ArticlePubMed Google Scholar
Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology35, 169–191 (2010). ArticlePubMed Google Scholar
Simmons, A. N. et al. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol. Psychiatry64, 681–690 (2008). ArticlePubMedPubMed Central Google Scholar
Strigo, I. A. et al. Neural correlates of altered pain response in women with posttraumatic stress disorder from intimate partner violence. Biol. Psychiatry68, 442–450 (2010). ArticlePubMed Google Scholar
Aupperle, R. L. et al. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch. Gen. Psychiatry69, 360–371 (2012). This paper linked functional brain activation patterns with neuropsychological test performance in PTSD. ArticlePubMed Google Scholar
Hayes, J. P., Hayes, S. M. & Mikedis, A. M. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol. Mood Anxiety Disord.2, 9 (2012). ArticlePubMedPubMed Central Google Scholar
Elzinga, B. M. & Bremner, J. D. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J. Affect. Disord.70, 1–17 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol. Psychiatry60, 376–382 (2006). ArticlePubMed Google Scholar
Pitman, R. K. Combat effects on mental health: the more things change, the more they remain the same. Arch. Gen. Psychiatry63, 127–128 (2006). ArticlePubMed Google Scholar
Geuze, E. et al. Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol. Psychiatry13, 74–83 (2008). ArticleCASPubMed Google Scholar
Murrough, J. W. et al. Reduced amygdala serotonin transporter binding in posttraumatic stress disorder. Biol. Psychiatry70, 1033–1038 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liberzon, I. et al. Altered central mu-opioid receptor binding after psychological trauma. Biol. Psychiatry61, 1030–1038 (2007). ArticleCASPubMed Google Scholar
Murrough, J. W. et al. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch. Gen. Psychiatry68, 892–900 (2011). ArticlePubMedPubMed Central Google Scholar
Southwick, S. M. et al. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol. Psychiatry46, 1192–1204 (1999). ArticleCASPubMed Google Scholar
Pitman, R. K. Post-traumatic stress disorder, hormones, and memory. Biol. Psychiatry26, 221–223 (1989). ArticleCASPubMed Google Scholar
Rasmusson, A. M. et al. Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) levels in combat-related PTSD. Biol. Psychiatry47, 526–539 (2000). ArticleCASPubMed Google Scholar
Perry, B. D., Giller, E. L. Jr & Southwick, S. M. Altered platelet α2-adrenergic binding sites in posttraumatic stress disorder. Am. J. Psychiatry144, 1511–1512 (1987). CASPubMed Google Scholar
Maes, M. et al. Serotonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacology20, 188–197 (1999). ArticleCASPubMed Google Scholar
Blanchard, E. B., Kolb, L. C., Prins, A., Gates, S. & McCoy, G. C. Changes in plasma norepinephrine to combat-related stimuli among Vietnam veterans with posttraumatic stress disorder. J. Nerv. Ment. Dis.179, 371–373 (1991). ArticleCASPubMed Google Scholar
Southwick, S. M. et al. Abnormal noradrenergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry50, 266–274 (1993). ArticleCASPubMed Google Scholar
Mellman, T. A., Kumar, A., Kulick-Bell, R., Kumar, M. & Nolan, B. Nocturnal/daytime urine noradrenergic measures and sleep in combat-related PTSD. Biol. Psychiatry38, 174–179 (1995). ArticleCASPubMed Google Scholar
Liberzon, I., Abelson, J. L., Flagel, S. B., Raz, J. & Young, E. A. Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology21, 40–50 (1999). ArticleCASPubMed Google Scholar
Bremner, J. D. et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch. Gen. Psychiatry54, 246–254 (1997). ArticleCASPubMed Google Scholar
Taylor, F. B. et al. Daytime prazosin reduces psychological distress to trauma specific cues in civilian trauma posttraumatic stress disorder. Biol. Psychiatry59, 577–581 (2006). ArticleCASPubMed Google Scholar
Raskind, M. A. et al. A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol. Psychiatry61, 928–934 (2007). ArticleCASPubMed Google Scholar
Vaiva, G. et al. Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol. Psychiatry54, 947–949 (2003). ArticleCASPubMed Google Scholar
Stein, M. B., Kerridge, C., Dimsdale, J. E. & Hoyt, D. B. Pharmacotherapy to prevent PTSD: results from a randomized controlled proof-of-concept trial in physically injured patients. J. Trauma Stress.20, 923–932 (2007). ArticlePubMed Google Scholar
Hoge, E. A. et al. Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script-driven imagery. CNS Neurosci. Ther.18, 21–27 (2012). ArticleCASPubMed Google Scholar
Southwick, S. M. et al. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry54, 749–758 (1997). ArticleCASPubMed Google Scholar
Baumann, M. H., Mash, D. C. & Staley, J. K. The serotonin agonist m-chlorophenylpiperazine (mCPP) binds to serotonin transporter sites in human brain. Neuroreport6, 2150–2152 (1995). ArticleCASPubMed Google Scholar
Murphy, D. L., Lesch, K. P., Aulakh, C. S. & Pigott, T. A. Serotonin-selective arylpiperazines with neuroendocrine, behavioral, temperature, and cardiovascular effects in humans. Pharmacol. Rev.43, 527–552 (1991). CASPubMed Google Scholar
Kennett, G. A. et al. Effect of chronic administration of selective 5-hydroxytryptamine and noradrenaline uptake inhibitors on a putative index of 5-HT2C/2B receptor function. Neuropharmacology33, 1581–1588 (1994). ArticleCASPubMed Google Scholar
Britton, K. T., Akwa, Y., Spina, M. G. & Koob, G. F. Neuropeptide Y blocks anxiogenic-like behavioral action of corticotropin-releasing factor in an operant conflict test and elevated plus maze. Peptides21, 37–44 (2000). ArticleCASPubMed Google Scholar
Morgan, C. A. et al. Neuropeptide-Y, cortisol, and subjective distress in humans exposed to acute stress: replication and extension of previous report. Biol. Psychiatry52, 136–142 (2002). ArticleCASPubMed Google Scholar
Sah, R. et al. Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. Biol. Psychiatry66, 705–707 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yehuda, R., Brand, S. & Yang, R. K. Plasma neuropeptide Y concentrations in combat exposed veterans: relationship to trauma exposure, recovery from PTSD, and coping. Biol. Psychiatry59, 660–663 (2006). ArticleCASPubMed Google Scholar
Dunn, A. J. & Berridge, C. W. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res. Brain Res. Rev.15, 71–100 (1990). ArticleCASPubMed Google Scholar
Baker, D. G. et al. Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry162, 992–994 (2005). ArticlePubMed Google Scholar
de Kloet, C. S. et al. Elevated plasma corticotrophin-releasing hormone levels in veterans with posttraumatic stress disorder. Prog. Brain Res.167, 287–291 (2008). ArticleCASPubMed Google Scholar
Geracioti, T. D. Jr et al. Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology33, 416–424 (2008). ArticleCASPubMed Google Scholar
Yehuda, R. et al. Low urinary cortisol excretion in patients with posttraumatic stress disorder. J. Nerv. Ment. Dis.178, 366–369 (1990). ArticleCASPubMed Google Scholar
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med.346, 108–114 (2002). This article reviewed a highly influential body of research involving hyper-responsiveness of glucocorticoid receptors, enhanced negative feedback of the hypothalamus–pituitary–adrenal cortical axis and lower circulating cortisol levels in PTSD. ArticleCASPubMed Google Scholar
Yehuda, R., Boisoneau, D., Lowy, M. T. & Giller, E. L. Jr. Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch. Gen. Psychiatry52, 583–593 (1995). ArticleCASPubMed Google Scholar
Yehuda, R., Lowy, M. T., Southwick, S. M., Shaffer, D. & Giller, E. L. Jr. Lymphocyte glucocorticoid receptor number in posttraumatic stress disorder. Am. J. Psychiatry148, 499–504 (1991). ArticleCASPubMed Google Scholar
Yehuda, R. Status of glucocorticoid alterations in post-traumatic stress disorder. Ann. NY Acad. Sci.1179, 56–69 (2009). ArticleCASPubMed Google Scholar
Mehta, D. et al. Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch. Gen. Psychiatry68, 901–910 (2011). ArticleCASPubMedPubMed Central Google Scholar
Young, E. A. & Breslau, N. Cortisol and catecholamines in posttraumatic stress disorder: an epidemiologic community study. Arch. Gen. Psychiatry61, 394–401 (2004). ArticleCASPubMed Google Scholar
Young, E. A. & Breslau, N. Saliva cortisol in posttraumatic stress disorder: a community epidemiologic study. Biol. Psychiatry56, 205–209 (2004). ArticleCASPubMed Google Scholar
Rasmusson, A. M. et al. Increased pituitary and adrenal reactivity in premenopausal women with posttraumatic stress disorder. Biol. Psychiatry50, 965–977 (2001). ArticleCASPubMed Google Scholar
Schelling, G. et al. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol. Psychiatry55, 627–633 (2004). ArticleCASPubMed Google Scholar
Zohar, J. et al. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: interplay between clinical and animal studies. Eur. Neuropsychopharmacol.21, 796–809 (2011). ArticleCASPubMed Google Scholar
de Quervain, D. J. Glucocorticoid-induced inhibition of memory retrieval: implications for posttraumatic stress disorder. Ann. NY Acad. Sci.1071, 216–220 (2006). ArticleCASPubMed Google Scholar
McIntyre, C. K. & Roozendaal, B. in Neural Plasticity and Memory: From Genes to Brain Imaging (ed. Bermúdez-Rattoni, F.) 265–284 (CRC, 2007). Book Google Scholar
Sandi, C. Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci.34, 165–176 (2011). ArticleCASPubMed Google Scholar
Hou, Y. T., Lin, H. K. & Penning, T. M. Dexamethasone regulation of the rat 3α-hydroxysteroid/dihydrodiol dehydrogenase gene. Mol. Pharmacol.53, 459–466 (1998). ArticleCASPubMed Google Scholar
Rasmusson, A. M., Picciotto, M. R. & Krishnan-Sarin, S. Smoking as a complex but critical covariate in neurobiological studies of posttraumatic stress disorders: a review. J. Psychopharmacol.20, 693–707 (2006). ArticleCASPubMed Google Scholar
Yehuda, R. et al. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology34, 1304–1313 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rasmusson, A. M., Vythilingam, M. & Morgan, C. A. The neuroendocrinology of posttraumatic stress disorder: new directions. CNS Spectr.8, 651–657 (2003). ArticlePubMed Google Scholar
Chalbot, S. & Morfin, R. Dehydroepiandrosterone metabolites and their interactions in humans. Drug Metabol. Drug Interact.22, 1–23 (2006). ArticleCASPubMed Google Scholar
Balazs, Z., Schweizer, R. A., Frey, F. J., Rohner-Jeanrenaud, F. & Odermatt, A. DHEA induces 11β–HSD2 by acting on CCAAT/enhancer-binding proteins. J. Am. Soc. Nephrol.19, 92–101 (2008). ArticleCASPubMedPubMed Central Google Scholar
Spivak, B. et al. Elevated circulatory level of GABAA — antagonistic neurosteroids in patients with combat-related post-traumatic stress disorder. Psychol. Med.30, 1227–1231 (2000). ArticleCASPubMed Google Scholar
Sondergaard, H. P., Hansson, L. O. & Theorell, T. Elevated blood levels of dehydroepiandrosterone sulphate vary with symptom load in posttraumatic stress disorder: findings from a longitudinal study of refugees in Sweden. Psychother. Psychosom.71, 298–303 (2002). ArticlePubMed Google Scholar
Rasmusson, A. M. et al. An increased capacity for adrenal DHEA release is associated with decreased avoidance and negative mood symptoms in women with PTSD. Neuropsychopharmacology29, 1546–1557 (2004). ArticleCASPubMed Google Scholar
Gill, J., Vythilingam, M. & Page, G. G. Low cortisol, high DHEA, and high levels of stimulated TNFα, and IL-6 in women with PTSD. J. Trauma Stress21, 530–539 (2008). ArticlePubMedPubMed Central Google Scholar
Morgan, C. A. et al. Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry61, 819–825 (2004). ArticleCASPubMed Google Scholar
Morgan, C. A., Rasmusson, A., Pietrzak, R. H., Coric, V. & Southwick, S. M. Relationships among plasma dehydroepiandrosterone and dehydroepiandrosterone sulfate, cortisol, symptoms of dissociation, and objective performance in humans exposed to underwater navigation stress. Biol. Psychiatry66, 334–340 (2009). ArticleCASPubMed Google Scholar
Yehuda, R., Brand, S. R., Golier, J. A. & Yang, R. K. Clinical correlates of DHEA associated with post-traumatic stress disorder. Acta Psychiatr. Scand.114, 187–193 (2006). ArticleCASPubMed Google Scholar
Rasmusson, A. M. et al. Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol. Psychiatry60, 704–713 (2006). This article reported deficits in the synthesis of GABAergic neuroactive steroids in PTSD, suggesting a mechanism that may confer resistance to SSRI treatment and contribute to comorbidities, such as depression and chronic pain. ArticleCASPubMed Google Scholar
Genazzani, A. D. et al. Long-term low-dose dehydroepiandrosterone oral supplementation in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil. Steril.80, 1495–1501 (2003). ArticlePubMed Google Scholar
Schmidt, P. J. et al. Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch. Gen. Psychiatry62, 154–162 (2005). ArticleCASPubMed Google Scholar
Semyanov, A., Walker, M. C., Kullmann, D. M. & Silver, R. A. Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci.27, 262–269 (2004). ArticleCASPubMed Google Scholar
Pinna, G., Dong, E., Matsumoto, K., Costa, E. & Guidotti, A. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc. Natl Acad. Sci. USA100, 2035–2040 (2003). ArticleCASPubMedPubMed Central Google Scholar
True, W. R. et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch. Gen. Psychiatry50, 257–264 (1993). ArticleCASPubMed Google Scholar
Stein, M. B., Jang, K. L., Taylor, S., Vernon, P. A. & Livesley, W. J. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am. J. Psychiatry159, 1675–1681 (2002). ArticlePubMed Google Scholar
Sartor, C. E. et al. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women. Psychol. Med.41, 1497–1505 (2011). ArticleCASPubMed Google Scholar
Lyons, M. J. et al. Do genes influence exposure to trauma? A twin study of combat. Am. J. Med. Genet.48, 22–27 (1993). ArticleCASPubMed Google Scholar
Jang, K. L., Stein, M. B., Taylor, S., Asmundson, G. J. & Livesley, W. J. Exposure to traumatic events and experiences: aetiological relationships with personality function. Psychiatry Res.120, 61–69 (2003). ArticlePubMed Google Scholar
Cornelis, M. C., Nugent, N. R., Amstadter, A. B. & Koenen, K. C. Genetics of post-traumatic stress disorder: review and recommendations for genome-wide association studies. Curr. Psychiatry Rep.12, 313–326 (2010). ArticlePubMedPubMed Central Google Scholar
Sartor, C. E. et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch. Gen. Psychiatry69, 293–299 (2012). ArticlePubMedPubMed Central Google Scholar
Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature460, 748–752 (2009). CASPubMed Google Scholar
Chang, S. C. et al. No association between ADCYAP1R1 and post-traumatic stress disorder in two independent samples. Mol. Psychiatry17, 239–241 (2012). ArticleCASPubMed Google Scholar
Segman, R. H. et al. Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol. Psychiatry10, 500–513 (2005). ArticleCASPubMed Google Scholar
Zieker, J. et al. Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder. Mol. Psychiatry12, 116–118 (2007). ArticleCASPubMed Google Scholar
Yehuda, R. et al. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol. Psychiatry66, 708–711 (2009). ArticleCASPubMed Google Scholar
Kilpatrick, D. G. et al. The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. Am. J. Psychiatry164, 1693–1699 (2007). This was the first study to document a genotype by environment interaction in risk of PTSD. The data suggested that the low expression variant of the serotonin transporter gene increases risk of PTSD under conditions of high stress and low social support but not under low stress conditions. ArticlePubMed Google Scholar
Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA299, 1291–1305 (2008). ArticleCASPubMedPubMed Central Google Scholar
Uddin, M. et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl Acad. Sci. USA107, 9470–9475 (2010). This study provided evidence of a biological model of PTSD aetiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes. ArticlePubMedPubMed Central Google Scholar
Smith, A. K. et al. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.156B, 700–708 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xie, P. et al. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch. Gen. Psychiatry66, 1201–1209 (2009). ArticlePubMedPubMed Central Google Scholar
Xie, P., Kranzler, H. R., Farrer, L. & Gelernter, J. Serotonin transporter 5-HTTLPR genotype moderates the effects of childhood adversity on posttraumatic stress disorder risk: a replication study. Am. J. Med. Genet. B Neuropsychiatr. Genet.159B, 644–652 (2012). ArticleCASPubMedPubMed Central Google Scholar
Koenen, K. C. et al. Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment. Am. J. Epidemiol.169, 704–711 (2009). ArticlePubMedPubMed Central Google Scholar
Philibert, R. A. et al. The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B, 543–549 (2008). ArticleCASPubMed Google Scholar
Koenen, K. C. et al. SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress. Anxiety28, 639–647 (2011). ArticleCASPubMedPubMed Central Google Scholar
Trollope, A. F. et al. Stress, epigenetic control of gene expression and memory formation. Exp. Neurol.233, 3–11 (2012). ArticleCASPubMed Google Scholar
El-Sayed, A. M., Halossim, M. R., Galea, S. & Koenen, K. C. Epigenetic modifications associated with suicide and common mood and anxiety disorders: a systematic review of the literature. Biol. Mood Anxiety Disord.2, 10 (2012). ArticlePubMedPubMed Central Google Scholar
Pitman, R. K., Orr, S. P. & Shalev, A. Y. Once bitten, twice shy: beyond the conditioning model of PTSD. Biol. Psychiatry33, 145–146 (1993). ArticleCASPubMed Google Scholar
Adamec, R. E. & Shallow, T. Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav.54, 101–109 (1993). An early and influential study of the PredEx animal model for PTSD. ArticleCASPubMed Google Scholar
Zoladz, P. R., Conrad, C. D., Fleshner, M. & Diamond, D. M. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress11, 259–281 (2008). ArticlePubMedPubMed Central Google Scholar
Cohen, H., Zohar, J. & Matar, M. The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol. Psychiatry53, 463–473 (2003). ArticlePubMed Google Scholar
Mesches, M. H., Fleshner, M., Heman, K. L., Rose, G. M. & Diamond, D. M. Exposing rats to a predator blocks primed burst potentiation in the hippocampus in vitro. J. Neurosci.19, RC18 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liberzon, I., Lopez, J. F., Flagel, S. B., Vazquez, D. M. & Young, E. A. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J. Neuroendocrinol.11, 11–17 (1999). This study demonstrated the construct validity of the SPS animal model of PTSD. ArticleCASPubMed Google Scholar
Kohda, K. et al. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience148, 22–33 (2007). ArticleCASPubMed Google Scholar
Servatius, R. J., Ottenweller, J. E., Bergen, M. T., Soldan, S. & Natelson, B. H. Persistent stress-induced sensitization of adrenocortical and startle responses. Physiol Behav.56, 945–954 (1994). ArticleCASPubMed Google Scholar
Pynoos, R. S., Ritzmann, R. F., Steinberg, A. M., Goenjian, A. & Prisecaru, I. A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol. Psychiatry39, 129–134 (1996). ArticleCASPubMed Google Scholar
Rau, V. & Fanselow, M. S. Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress12, 125–133 (2009). ArticlePubMed Google Scholar
Li, X., Han, F., Liu, D. & Shi, Y. Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder. Neurol. Res.32, 579–586 (2010). ArticleCASPubMed Google Scholar
Kozlovsky, N., Matar, M. A., Kaplan, Z., Zohar, J. & Cohen, H. A distinct pattern of intracellular glucocorticoid-related responses is associated with extreme behavioral response to stress in an animal model of post-traumatic stress disorder. Eur. Neuropsychopharmacol.19, 759–771 (2009). ArticleCASPubMed Google Scholar
Zhe, D., Fang, H. & Yuxiu, S. Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats. Acta Histochem. Cytochem.41, 89–95 (2008). ArticleCASPubMedPubMed Central Google Scholar
Adamec, R., Muir, C., Grimes, M. & Pearcey, K. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav. Brain Res.179, 192–207 (2007). ArticleCASPubMed Google Scholar
Adamec, R., Fougere, D. & Risbrough, V. CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int. J. Neuropsychopharmacol.13, 747–757 (2010). ArticleCASPubMed Google Scholar
Cohen, H., Matar, M. A., Buskila, D., Kaplan, Z. & Zohar, J. Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder. Biol. Psychiatry64, 708–717 (2008). ArticleCASPubMed Google Scholar
Kaouane, N. et al. Glucocorticoids can induce PTSD-like memory impairments in mice. Science335, 1510–1513 (2012). ArticleCASPubMed Google Scholar
Knox, D., Perrine, S. A., George, S. A., Galloway, M. P. & Liberzon, I. Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci. Lett.480, 16–20 (2010). ArticleCASPubMedPubMed Central Google Scholar
Harvey, B. H., Oosthuizen, F., Brand, L., Wegener, G. & Stein, D. J. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berl.)175, 494–502 (2004). ArticleCAS Google Scholar
Yamamoto, S. et al. Alterations in the hippocampal glycinergic system in an animal model of posttraumatic stress disorder. J. Psychiatr. Res.44, 1069–1074 (2010). ArticlePubMed Google Scholar
Yamamoto, S. et al. Effects of single prolonged stress and d-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology33, 2108–2116 (2008). ArticleCASPubMed Google Scholar
Blundell, J. & Adamec, R. The NMDA receptor antagonist CPP blocks the effects of predator stress on pCREB in brain regions involved in fearful and anxious behavior. Brain Res.1136, 59–76 (2007). ArticleCASPubMed Google Scholar
Adamec, R., Holmes, A. & Blundell, J. Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: sex, serotonin and other factors-relevance to PTSD. Neurosci. Biobehav. Rev.32, 1287–1292 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harvey, B. H., Brand, L., Jeeva, Z. & Stein, D. J. Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol. Behav.87, 881–890 (2006). ArticleCASPubMed Google Scholar
Kesner, Y. et al. WFS1 gene as a putative biomarker for development of post-traumatic syndrome in an animal model. Mol. Psychiatry14, 86–94 (2009). ArticleCASPubMed Google Scholar
Luo, F. F., Han, F. & Shi, Y. X. Changes in 5-HT1A receptor in the dorsal raphe nucleus in a rat model of post-traumatic stress disorder. Mol. Med. Report.4, 843–847 (2011). CAS Google Scholar
Harvey, B. H., Naciti, C., Brand, L. & Stein, D. J. Endocrine, cognitive and hippocampal/cortical 5HT1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats. Brain Res.983, 97–107 (2003). ArticleCASPubMed Google Scholar
Wang, H. T., Han, F. & Shi, Y. X. Activity of the 5-HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropin-releasing factor in hypothalamus in SPS rats. Int. J. Mol. Med.24, 227–231 (2009). CASPubMed Google Scholar
Harada, K., Yamaji, T. & Matsuoka, N. Activation of the serotonin 5-HT2C receptor is involved in the enhanced anxiety in rats after single-prolonged stress. Pharmacol. Biochem. Behav.89, 11–16 (2008). ArticleCASPubMed Google Scholar
Olson, V. G. et al. The role of norepinephrine in differential response to stress in an animal model of posttraumatic stress disorder. Biol. Psychiatry70, 441–448 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takei, S. et al. Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J. Psychiatr. Res.45, 460–468 (2011). ArticlePubMed Google Scholar
Kozlovsky, N. et al. Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int. J. Neuropsychopharmacol.10, 741–758 (2007). ArticleCASPubMed Google Scholar
Roth, T. L., Zoladz, P. R., Sweatt, J. D. & Diamond, D. M. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J. Psychiatr. Res.45, 919–926 (2011). ArticlePubMedPubMed Central Google Scholar
Pitman, R. K. & Orr, S. P. in Posttraumatic Stress Disorder in Litigation: Guidelines for Forensic Assessment (ed. Simon, R. I.) 207–223 (American Psychiatric Press, 2003). Google Scholar
Yehuda, R., McFarlane, A. C. & Shalev, A. Y. Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol. Psychiatry44, 1305–1313 (1998). ArticleCASPubMed Google Scholar
Delahanty, D. L., Raimonde, A. J. & Spoonster, E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry48. 940–947 (2000). ArticleCASPubMed Google Scholar
Brunet, A. et al. Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J. Psychiatr. Res.42, 503–506 (2008). ArticlePubMed Google Scholar
Brunet, A. et al. Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder: 3 open-label trials. J. Clin. Psychopharmacol.31, 547–550 (2011). ArticlePubMed Google Scholar
Schiller, D. et al. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature463, 49–53 (2010). ArticleCASPubMed Google Scholar
Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry62, 446–454 (2007). ArticlePubMed Google Scholar
Milad, M. R. et al. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry62, 1191–1194 (2007). ArticlePubMed Google Scholar
Goldstein, L. E., Rasmusson, A. M., Bunney, B. S. & Roth, R. H. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci.16, 4787–4798 (1996). ArticleCASPubMedPubMed Central Google Scholar
Arnsten, A. F. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Rev. Neurosci.10, 410–422 (2009). ArticleCAS Google Scholar
Rosenkranz, J. A. & Grace, A. A. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J. Neurosci.22, 324–337 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chhatwal, J. P., Myers, K. M., Ressler, K. J. & Davis, M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci.25, 502–506 (2005). ArticleCASPubMedPubMed Central Google Scholar
Heldt, S. A. & Ressler, K. J. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur. J. Neurosci.26, 3631–3644 (2007). ArticlePubMedPubMed Central Google Scholar
Rosenkranz, J. A. & Grace, A. A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J. Neurosci.21, 4090–4103 (2001). ArticleCASPubMedPubMed Central Google Scholar
Braga, M. F., Aroniadou-Anderjaska, V., Manion, S. T., Hough, C. J. & Li, H. Stress impairs α1A adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology29, 45–58 (2004). ArticleCASPubMed Google Scholar
Buffalari, D. M. & Grace, A. A. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of α-2 and β receptor activation. J. Neurosci.27, 12358–12366 (2007). ArticleCASPubMedPubMed Central Google Scholar