Identification and characterization of a surface-associated, subtilisin-like serine protease in Trichomonas vaginalis | Parasitology | Cambridge Core (original) (raw)

References

Alderete, J. F. and Neale, K. A. (1989). Relatedness of structures of a major immunogen in Trichomonas vaginalis isolates. Infection and Immunity 57, 1849–1853.CrossRefGoogle Scholar

Alderete, J. F., Provenzano, D. and Lehker, M. W. (1995). Iron mediates Trichomonas vaginalis resistance to complement lysis. Microbial Pathogenesis 19, 93–103.Google Scholar

Alexander, P. A., Ruan, B. and Bryan, P. N. (2001). Cation-dependent stability of subtilisin. Biochemistry 40, 10634–10639.Google Scholar

Alvarez-Sanchez, M. E., Avila-Gonzalez, L., Becerril-Garcia, C., Fattel-Facenda, L. V., Ortega-Lopez, J. and Arroyo, R. (2000). A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microbial Pathogenesis 28, 193–202.Google Scholar

Alvarez-Sanchez, M. E., Carvajal-Gamez, B. I., Solano-Gonzalez, E., Martinez-Benitez, M., Garcia, A. F., Alderete, J. F. and Arroyo, R. (2008). Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage. The International Journal of Biochemistry & Cell Biology 40, 2442–2451.Google Scholar

Alvarez-Sanchez, M. E., Solano-Gonzalez, E., Yañez-Gomez, C. and Arroyo, R. (2007). Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes and Infection/Institut Pasteur 9, 1597–1605.CrossRefGoogle ScholarPubMed

Allan, V. J. (2000). Protein Localization by Fluorescence Localization, Oxford University Press, New York, USA.Google Scholar

Anderson, E. T., Wetherell, M. G., Winter, L. A., Olmsted, S. B., Cleary, P. P. and Matsuka, Y. V. (2002). Processing, stability, and kinetic parameters of C5a peptidase from Streptococcus pyogenes. European Journal of Biochemistry 269, 4839–4851.CrossRefGoogle ScholarPubMed

Arroyo, R. and Alderete, J. F. (1989). Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infection and Immunity 57, 2991–2997.CrossRefGoogle ScholarPubMed

Bagga, S., Hu, G., Screen, E. S. and St Leger, R. J. (2004). Reconstructing the diversification of subtilisins in the pathogenic fungus Metharzium anisopliae. Gene 324, 159–169.CrossRefGoogle ScholarPubMed

Bendtsen, J. D., Nielsen, H., Von, H. G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783–795.CrossRefGoogle ScholarPubMed

Bennett-Lovsey, R. M., Herbert, A. D., Sternberg, M. J. and Kelley, L. A. (2008). Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70, 611–625.CrossRefGoogle ScholarPubMed

Brown, G. D., Dave, J. A., Gey van Pittius, N. C., Stevens, L., Ehlers, M. R. W. and Beyers, A. D. (2000). The mycosins of Mycobacterium tuberculosis H37Rv: a family of subtilisin-like serine proteases. Gene 254, 147–155.CrossRefGoogle ScholarPubMed

Brown, M. T., Goldstone, H. M., Bastida-Corcuera, F., Delgadillo-Correa, M. G., McArthur, A. G. and Johnson, P. J. (2007). A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Molecular Microbiology 64, 1154–1163.CrossRefGoogle ScholarPubMed

Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van De, P. Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Muller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., Haas, B. J., Pertea, M., Feldblyum, T. V., Utterback, T. R., Shu, C. L., Osoegawa, K., De Jong, P. J., Hrdy, I., Horvathova, L., Zubacova, Z., Dolezal, P., Malik, S. B., Logsdon, J. M. JR., Henze, K., Gupta, A., Wang, C. C., Dunne, R. L., Upcroft, J. A., Upcroft, P., White, O., Salzberg, S. L., Tang, P., Chiu, C. H., Lee, Y. S., Embley, T. M., Coombs, G. H., Mottram, J. C., Tachezy, J., Fraser-Liggett, C. M. and Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207–212.Google Scholar

Carruthers, V. B. (2006). Proteolysis and Toxoplasma invasion. International Journal for Parasitology 36, 595–600.CrossRefGoogle ScholarPubMed

Cohen, J. (2000). HIV transmission. AIDS researchers look to Africa for new insights. Science 287, 942–943.CrossRefGoogle Scholar

Conseil, V., Soete, M. and Dubremetz, J. F. (1999). Serine protease inhibitors block invasion of host cells by Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 43, 1358–1361.CrossRefGoogle ScholarPubMed

Cotch, M. F., Pastorek, J. G., Nugent, R. P., Hillier, S. L., Gibbs, R. S., Martin, D. H., Eschenbach, D. A., Edelman, R., Carey, J. C., Regan, J. A., Krohn, M. A., Klebanoff, M. A., Rao, A. V. and Rhoads, G. G. (1997). Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sexually Transmitted Diseases 24, 353–360.CrossRefGoogle ScholarPubMed

Chang, Y. C., Kadokura, H., Yoda, K. and Yamasaki, M. (1996). Secretion of active subtilisin YaB by a simultaneous expression of separate pre-pro and pre-mature polypeptides in Bacillus subtilis. Biochemical and Biophysical Research Communications 219, 463–468.Google Scholar

Dailey, D. C., Chang, T. H. and Alderete, J. F. (1990). Characterization of Trichomonas vaginalis haemolysis. Parasitology 101, 171–175.CrossRefGoogle ScholarPubMed

Dejkriengkraikhul, P. and Wilairat, P. (1983). Requirement of malarial protease in the invasion of human red cells by merozoites of Plasmodium falciparum. Zeitschrift für Parasitenkunde 69, 313–317.CrossRefGoogle ScholarPubMed

Diamond, L. (1957). The establishment of various trichomonads of animals and man in axenic cultures. The Journal of Parasitology 43, 488–490.Google Scholar

Espinosa, N., Hernandez, R., Lopez-Griego, L. and Lopez-Villaseñor, I. (2002). Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene 289, 81–86.CrossRefGoogle ScholarPubMed

Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Ceric, G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. and Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Research 36, D281–D288.Google Scholar

Fiori, P. L., Rappelli, P., Addis, M. F., Mannu, F. and Cappuccinelli, P. (1997). Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infection and Immunity 65, 5142–5148.CrossRefGoogle ScholarPubMed

Garcia, A. F., Benchimol, M. and Alderete, J. F. (2005). Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infection and Immunity 73, 2602–2610.CrossRefGoogle ScholarPubMed

Garcia, A. F., Chang, T. H., Benchimol, M., Klumpp, D. J., Lehker, M. W. and Alderete, J. F. (2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Molecular Microbiology 47, 1207–1224.Google Scholar

Graycar, T. P., Ballinger, M. D. and Wells, J. A. (2004). Subtilisins. In Handbook of Proteolytic Enzymes Vol 2, 2nd Edn.(ed. Barrett, A. J., Rawlings, N. D. and Woessner, J. F.), pp. 1786–1792. Elsevier Academic Press, London, UK.Google Scholar

Harris, P. K., Yeoh, S., Dluzewski, A. R., O′Donell, R. A., Whiters-Martinez, C., Hackett, F., Bannister, L. H., Mitchell, G. H. and Blackman, M. J. (2005). Molecular identification of a malaria merozoite surface sheddase. Plos Pathogens 1, 0241–0251.Google Scholar

Hernandez-Gutierrez, R., Avila-Gonzalez, L., Ortega-Lopez, J., Cruz-Talonia, F., Gomez-Gutierrez, G. and Arroyo, R. (2004). Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Experimental Parasitology 107, 125–135.Google Scholar

Hernandez-Gutierrez, R., Ortega-Lopez, J. and Arroyo, R. (2003). A 39-kDa cysteine proteinase CP39 from Trichomonas vaginalis, which is negatively affected by iron may be involved in trichomonal cytotoxicity. The Journal of Eukaryotic Microbiology 50 (Suppl. ) 696–698.CrossRefGoogle ScholarPubMed

Hirt, R. P., Noel, C. J., Sicheritz-Ponten, T., Tachezy, J. and Fiori, P. L. (2007). Trichomonas vaginalis surface proteins: a view from the genome. Trends in Parasitology 23, 540–547.Google Scholar

Hong, Y. C., Kong, H. H., Ock, M. S., Kim, I. S. and Chung, D. I. (2000). Isolation and characterization of a cDNA encoding a subtilisin-like serine proteinase (ahSUB) from Acanthamoeba healyi. Molecular and Biochemical Parasitology 111, 441–446.Google Scholar

Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Mulder, N., Natale, D., Orengo, C., Quinn, A. F., Selengut, J. D., Sigrist, C. J., Thimma, M., Thomas, P. D., Valentin, F., Wilson, D., Wu, C. H. and Yeats, C. (2009). InterPro: the integrative protein signature database. Nucleic Acids Research 37, D211–D215.Google Scholar

Inouye, M. (1991). Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme 45, 314–321.Google Scholar

Kall, L., Krogh, A. and Sonnerhammer, E. L. (2004). A combined transmembrane topology and signal peptide prediction method. The Journal of Molecular Biology 338, 1027–1036.Google Scholar

Kall, L., Krogh, A. and Sonnerhammer, E. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Research 35, W429–W432.Google Scholar

Kelley, L. A., MacCallum, R. M. and Sternberg, M. J. (2000). Enhanced genome annotation using structural profiles in the program 3D-PSSM. The Journal of Molecular Biology 299, 499–520.Google Scholar

Kissinger, P., Amedee, A., Clark, R. A., Dumestre, J., Theall, K. P., Myers, L., Hagensee, M. E., Farley, T. A. and Martin, D. H. (2009). Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sexually Transmitted Diseases 36, 11–16.Google Scholar

Kissinger, P., Secor, W. E., Leichliter, J. S., Clark, R. A., Schmidt, N., Curtin, E. and Martin, D. H. (2008). Early repeated infections with Trichomonas vaginalis among HIV-positive and HIV-negative women. Clinical Infectious Diseases 46, 994–999.Google Scholar

Klemba, M. and Goldberg, D. E. (2002). Biological roles of proteases in parasitic protozoa. Annual Review of Biochemistry 71, 275–305.Google Scholar

Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. The Journal of Molecular Biology 157, 105–132.CrossRefGoogle ScholarPubMed

Laga, M., Manoka, A., Kivuvu, M., Malele, B., Tuliza, M., Nzila, N., Goeman, J., Behets, F., Batter, V. and Alary, M. (1993). Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7, 95–102.Google Scholar

Leher, H., Silvany, R., Alizadeh, H., Huang, J. and Niederkorn, J. Y. (1998). Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infection and Immunity 66, 5–10.Google Scholar

Lehker, M. W., Arroyo, R. and Alderete, J. F. (1991). The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. The Journal of Experimental Medicine 174, 311–318.CrossRefGoogle ScholarPubMed

Liang, M. P., Banatao, D. R., Klein, T. E., Brutlag, D. L. and Altman, R. B. (2003). WebFEATURE: An interactive web tool for identifying and visualizing functional sites on macromolecular structures. Nucleic Acids Research 31, 3324–3327.Google Scholar

Liston, D. R. and Johnson, P. J. (1999). Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Molecular and Cellular Biology 19, 2380–2388.Google Scholar

Lopez-Villaseñor, I., Contreras, A. P., Lopez-Griego, L., Alvarez-Sanchez, E. and Hernandez, R. (2004). Trichomonas vaginalis ribosomal DNA: analysis of the intergenic region and mapping of the transcription start point. Molecular and Biochemical Parasitology 137, 175–179.Google Scholar

McClelland, R. S., Sangare, L., Hassan, W. M., Lavreys, L., Mandaliya, K., Kiarie, J., Ndinya-Achola, J., Jaoko, W. and Baeten, J. M. (2007). Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. The Journal of Infectious Diseases 195, 698–702.Google Scholar

Mendoza-Lopez, M. R., Becerril-Garcia, C., Fattel-Facenda, L. V., Avila-Gonzalez, L., Ruiz-Tachiquin, M. E., Ortega-Lopez, J. and Arroyo, R. (2000). CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infection and Immunity 68, 4907–4912.Google Scholar

Miller, S. A., Binder, E. M., Blackman, M. J., Carruthers, V. B. and Kim, K. (2001). A conserved subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii. The Journal of Biological Chemistry 276, 45341–45348.Google Scholar

Miller, S. A., Thathy, V., Ajioka, J. W., Blackman, M. J. and Kim, K. (2003). TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Molecular Microbiology 49, 883–894.CrossRefGoogle ScholarPubMed

Min, D. Y., Hyun, K. H., Ryu, J. S., Ahn, M. H. and Cho, M. H. (1998). Degradations of human immunoglobulins and hemoglobin by a 60 kDa cysteine proteinase of Trichomonas vaginalis. The Korean Journal of Parasitology 36, 261–268.Google Scholar

Moon, E. K., Lee, S. T., Chung, D. I. and Kong, H. H. (2006). Intracellular localization and trafficking of serine proteinase AhSub and cysteine proteinase AhCP of Acanthamoeba healyi. Eukaryotic Cell 5, 125–131.Google Scholar

Mundodi, V., Kucknoor, A. S. and Alderete, J. F. (2008). Immunogenic and plasminogen-binding surface-associated alpha-enolase of Trichomonas vaginalis. Infection and Immunity 76, 523–531.CrossRefGoogle ScholarPubMed

Nielsen, H., Engelbrecht, J., Brunak, S. and Von, H. G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10, 1–6.Google Scholar

Nonaka, T., Fujihashi, M., Kita, A., Saeki, K., Ito, S., Horikoshi, K. and Miki, K. (2004). The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal beta-barrel domain. The Journal of Biological Chemistry 279, 47344–47351.Google Scholar

Ong, S. J., Hsu, H. M., Liu, H. W., Chu, C. H. and Tai, J. H. (2006). Multifarious transcriptional regulation of adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite Trichomonas vaginalis. Eukaryotic Cell 5, 391–399.Google Scholar

Ong, S. J., Hsu, H. M., Liu, H. W., Chu, C. H. and Tai, J. H. (2007). Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. The Journal of Biological Chemistry 282, 6716–6725.CrossRefGoogle ScholarPubMed

Ong, S. J., Huang, S. C., Liu, H. W. and Tai, J. H. (2004). Involvement of multiple DNA elements in iron-inducible transcription of the ap65-1 gene in the protozoan parasite Trichomonas vaginalis. Molecular Microbiology 52, 1721–1730.CrossRefGoogle ScholarPubMed

Provenzano, D. and Alderete, J. F. (1995). Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infection and Immunity 63, 3388–3395.Google Scholar

Rholam, M. and Fahy, C. (2009). Processing of peptide and hormone precursos at the dibasic cleavage sites. Cellular and Molecular Life Sciences 66, 2075–2091.Google Scholar

Sajid, M., Withers-Martinez, C. and Blackman, M. J. (2000). Maturation and specificity of Plasmodium falciparum subtilisin-like protease-1, a malaria merozoite subtilisin-like serine protease. The Journal of Biological Chemistry 275, 631–641.Google Scholar

Siezen, R. J. and Leunissen, J. A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Science 6, 501–523.Google Scholar

Sommer, U., Costello, C. E., Hayes, G. R., Beach, D. H., Gilbert, R. O., Lucas, J. J. and Singh, B. N. (2005). Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. The Journal of Biological Chemistry 280, 23853–23860.Google Scholar

St Leger, R. J., Joshi, L., Roberts, D. W. (1997). Adaptation of proteases and carbohydrases of saprophytic, phytopatogenic fungi to the requeriments of their ecological niches. Microbiology 143, 1983–1992.CrossRefGoogle Scholar

Subbian, E., Yabuta, Y. and Shinde, U. (2004). Positive selection dictates the choice between kinetic and thermodynamic protein folding and stability in subtilases. Biochemistry 43, 14348–14360.CrossRefGoogle ScholarPubMed

van der Hoorn, R. A. L. (2008). Plant Proteases: From Phenotypes to Molecular Mechanisms. Annual Review of Plant Biology 59, 191–223.CrossRefGoogle ScholarPubMed

Van Der Pol, B., Kwok, C., Pierre-Louis, B., Rinaldi, A., Salata, R. A., Chen, P. L., Van De Wijgert, J., Mmiro, F., Mugerwa, R., Chipato, T. and Morrison, C. S. (2008). Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. The Journal of Infectious Diseases 197, 548–554.Google Scholar

Viikki, M., Pukkala, E., Nieminen, P. and Hakama, M. (2000). Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncologica 39, 71–75.Google Scholar

Wiederstein, M. and Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35, W407–W410.CrossRefGoogle ScholarPubMed

Wilson, M. E. and Britigan, B. E. (1998). Iron acquisition by parasitic protozoa. Parasitology Today 14, 348–353.Google Scholar

Withers-Martinez, C., Jean, L. and Blackman, M. J. (2004). Subtilisin-like proteases of the malaria parasite. Molecular Microbiology 53, 55–63.CrossRefGoogle ScholarPubMed