A study of the science of taste: On the origins and influence of the core ideas | Behavioral and Brain Sciences | Cambridge Core (original) (raw)
Abstract
Our understanding of the sense of taste is largely based on research designed and interpreted in terms of the traditional four “basic” tastes: sweet, sour, salty, and bitter, and now a few more. This concept of basic tastes has no rational definition to test, and thus it has not been tested. As a demonstration, a preliminary attempt to test one common but arbitrary psychophysical definition of basic tastes is included in this article; that the basic tastes are unique in being able to account for other tastes. This definition was falsified in that other stimuli do about as well as the basic words and stimuli. To the extent that this finding might show analogies with other studies of receptor, neural, and psychophysical phenomena, the validity of the century-long literature of the science of taste based on a few “basics” is called into question. The possible origins, meaning, and influence of this concept are discussed. Tests of the model with control studies are suggested in all areas of taste related to basic tastes. As a stronger alternative to the basic tradition, the advantages of the across-fiber pattern model are discussed; it is based on a rational data-based hypothesis, and has survived attempts at falsification. Such “population coding” has found broad acceptance in many neural systems.
References
Adrian, E. D. (1955) The action of the mammalian olfactory organ. The Seman Lecture. Journal of Laryngology and Otology 70:1–14.CrossRefGoogle Scholar
Aldenderfer, M. S. & Blashfield, R. K. (1984) Cluster analysis: Quantitative applications in the social sciences, ed. Sullivan, J. L. & Niemi, R. G.. Sage University Papers, Sage Publications.CrossRefGoogle Scholar
Bartoshuk, L. M. (1988) Taste. In: Stevens' handbook of experimental psychology, vol. 1, 2nd edition, ed. Atkinson, R. C., Herrnstein, R. J., Lindzey, G. & Luce, R. D., pp. 461–99. Wiley., vol. 1: Sensation and perception, 3rd edition, ed. Pashler, H. & Yantis, S., pp. 653–90. Wiley.Google Scholar
Halpern, B. P. (2002b) What's in a name? Are MSG and umami the same? Chemical Senses 27:845–46.CrossRefGoogle Scholar
Hanig, D. P. (1901) Zur psychophysik des geschmackssinnes. Philosophische Studien 17:576–623.Google Scholar
Henning, H. (1916) Die qualitatenreihe des geschmacks (The quality series of taste). Zeitschrift Psychologie 74:203–19. (See Erickson 1984a for a translation).Google Scholar
Herness, S. (2000) Coding in taste receptor cells: The early years of intracellular recordings. Physiology and Behavior 69:17–27.CrossRefGoogle ScholarPubMed
Ishii, R. & O'Mahoney, M. (1987) Taste sorting and naming: Can taste concepts be misrepresented by traditional psychophysical labelling systems? Chemical Senses 12:37–51.CrossRefGoogle Scholar
James, W. (1890) Principles of psychology, vol. I: The sources of error in psychology, p. 194. Henry Holt.Google Scholar
Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (1991) Smell and taste: The chemical senses. In: Principles of neural science, 3rd edition, ed. Dodd, J. & Castellucci, V. F., pp. 512–29. Elsevier/North-Holland.Google Scholar
Kimble, G. A. (1996) Psychology: The hope of a science, p. 137. MIT Press.Google Scholar
Kruskal, J. B. & Wish, M. (1978) Cluster analysis: Quantitative applications in the social sciences, ed. Uslander, E. M.. Sage University Papers, Sage Publications.Google Scholar
Lawless, H. T., Stevens, D. A., Chapman, K. W. & Kurtz, A. (2005) Metallic taste from electrical and chemical stimulation. Chemical Senses 30:185–94.CrossRefGoogle ScholarPubMed
Lemon, C. H. & Smith, D. V. (2005) Neural representation of bitter taste in the nucleus of the solitary tract. Journal of Neurophysiology 94(6):3719–29.CrossRefGoogle ScholarPubMed
Lemon, C. H. & Smith, D. V. (2006) Influence of response variability on the coding performance of central gustatory neurons. Journal of Neuroscience 26:7433–43.CrossRefGoogle ScholarPubMed
McBurney, D. H. (1974) Are there primary tastes for man? Chemical Senses and Flavor 1:17–28.CrossRefGoogle Scholar
McBurney, D. H. (1978) Psychophysical dimensions and perceptual analyses of taste. In: Handbook of perception, vol VIA, ed. Carterette, E. C. & Friedman, M. P.. Academic Press.Google Scholar
McCormack, D. N., Clyburn, V. L. & Pittman, D. W. (2006) Detection of free fatty acids following a conditioned taste aversion in rats. Physiology and Behavior 87:582–94.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63:81–97.CrossRefGoogle ScholarPubMed
Mueller, K. L., Hoon, M. A., Erlenbach, I., Chandrashekar, J., Zuker, C. S. & Ryba, N. J. (2005) The receptors and coding logic for bitter taste. Nature 434(7030):225–29. Available at: http://www.nature.com/nature/journal/v434/n7030/abs/nature03352.html.CrossRefGoogle Scholar
O'Mahony, M., Atassi-Sheldon, S., Rothman, L. & Murphy-Ellison, T. (1983) Relative singularity/mixedness judgements for selected taste stimuli. Physiology and Behavior 31:749–55.CrossRefGoogle ScholarPubMed
O'Mahony, M. & Ishii, R. (1987) The umami taste concept: Implications for the dogma of four basic tastes. In: Umami: A basic taste, ed. Kawamura, Y. & Kare, M. R., pp. 75–93. Marcel Dekker.Google Scholar
Osgood, C. E. (1956) Method and theory in experimental psychology Oxford University Press.Google Scholar
Pfaffmann, C. (1941) Gustatory afferent impulses. Journal of Cellular and Comparative Physiology 17:243–58.CrossRefGoogle Scholar
Pfaffmann, C. (1951) Taste and smell. In: Handbook of experimental psychology, ed. Stevens, S. S., pp. 1143–71. Wiley.Google Scholar
Pfaffmann, C. (1954) The chemical senses. In: Experimental psychology, ed. Woodworth, R. S. & Schlosberg, H., pp. 297–322. H. Holt.Google Scholar
Pfaffmann, C. (1955) Gustatory nerve impulses in rat, cat and rabbit. Journal of Neurophysiology 18:429–40.CrossRefGoogle Scholar
Pittman, D. W., Labban, C. E, Anderson, A. A. & O'Connor, H. E. (2006) Linoleic and oleic acids alter the licking responses to sweet, salt, sour, and bitter tastants in rats. Chemical Senses 31:835–43.CrossRefGoogle ScholarPubMed
Poincaré, H. (1952) Hypotheses in physics. In: Science and hypotheses Dover.Google Scholar
Popper, K. R. (1963) Conjectures and refutations, pp. 33–39. Routledge & Kegan. From T. Schiek, ed. (2000) Readings in the philosophy of science, pp. 9–13. Mayfield Publishing.Google Scholar
Purves, D., Augustine, G. J., Firzpatrick, D., Katz, L. C., La Mantia, A.-S., McNamara, J. O. & Williams, S. M., eds. (2001) The chemical senses. In: Neuroscience, pp. 317–44. Sinauer.Google Scholar
Rolls, E. T. (2005). Taste and related systems in primates including humans. Chemical Senses 30, Suppl. 1, i76–i77.CrossRefGoogle ScholarPubMed
Sarle, W. (1987) Introduction to clustering procedures. In: SAS/STAT guide for personal computers, version 6, ed. Luginbuhl, R. D., Schlotzhauer, S. D. & Parker, J. C.. SAS Institute.Google Scholar
Schiffman, S. S. & Dakis, C. (1975) Taste of nutrients: Amino acids, vitamins, and fatty acids. Perception and Psychophysics 17:140–46.CrossRefGoogle Scholar
Schiffman, S. S. & Erickson, R. P. (1971) A psychophysical model for gustatory quality. Physiology and Behavior 7:617–33.CrossRefGoogle ScholarPubMed
Schiffman, S. S. & Erickson, R. P. (1980) The issue of primary tastes versus a taste continuum. Neuroscience and Biobehavioral Reviews 4:109–17.CrossRefGoogle ScholarPubMed
Schiffman, S. S. & Erickson, R. P. (1993) Psychophysics: Insights into transduction mechanisms and neural coding. In: Mechanisms of taste transduction, ed. Simon, S. A. & Roper, S. D., pp. 395–424. CRC Press.Google Scholar
Schiffman, S. S., Orlandi, M. & Erickson, R. P. (1979) Changes in taste and smell with age: Biological aspects. In: Sensory systems and communication in the elderly, ed. Ordy, J. M. & Brizzee, K., pp. 247–68. Raven Press.Google Scholar
Scott, T. R. & Erickson, R. P. (1971) Synaptic processing of taste-quality information in thalamus of the rat. Journal of Neurophysiology 33:490–507.Google Scholar
Scott, T. R. & Giza, B. K. (2000) Issues of gustatory neural coding: Where they stand today. Physiology & Behavior 69(1–2):65–76.CrossRefGoogle ScholarPubMed
Shallenberger, R. S. & Acree, T. E. (1971) Chemical structure of compounds and their sweet and bitter taste. In: Handbook of neurophysiology, vol. IV: Chemical senses, Part 2, Taste, ed. Beidler, L. M., pp. 221–78. Springer.Google Scholar
Shepherd, G. M. (1994) Chemical senses. In: Neurobiology, 3rd edition. pp. 247–66. Oxford University Press.Google Scholar
Simon, S. S., de Araujo, I. E., Gutierrez, R. & Nicolelis, M. A. L. (2006) The neural mechanisms of gustation: A distributed code. Nature Reviews: Neuroscience 7:8–19.CrossRefGoogle Scholar
Smith, D. V. & Davis, B. J. (2000) Neural representation of taste. The neurobiology of taste and smell, 2nd edition, ed. Finger, T. E., Silver, W. L. & Restrepo, D., pp. 353–94. Wiley/Liss.Google Scholar
Smith, D. V. & Li, C.-S. (1998) Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract. Chemical Senses 23:159–69.CrossRefGoogle ScholarPubMed
Smith, D. V. & Li, C.-S. (2000) GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Research 858:408–15.CrossRefGoogle ScholarPubMed
Smith, D. V. & Scott, T. R. (2001) Gustatory neural coding. In: Handbook of olfaction and gustation, 2nd edition.Marcel Dekker.Google Scholar
Smith, D. V. & St. John, S. J.. (1999) Neural coding of gustatory information. Current Opinion in Neurobiology 9:427–35.CrossRefGoogle ScholarPubMed
Smith, D. V., St. John, S. J. & Boughter, J. D. Jr. (2000) Neuronal cell types and taste quality coding. Physiology & Behavior 69:77–85.CrossRefGoogle ScholarPubMed
Smith, D. V. & Vogt, M. B. (1997) The neural code and integrative processes of taste. In: Tasting and smelling, pp. 25–76. Academic Press.CrossRefGoogle Scholar
Sokal, R. & Sneath, P. (1963) Principles of numerical taxonomy Freeman.Google Scholar
Stapelton, J. R., Lavine, M. L., Wolpert, R. L., Nicolelis, M. A. L. & Simon, S. A. (2006) Rapid taste responses in the gustatory cortex during licking. Journal of Neuroscience 26:4126–38.CrossRefGoogle Scholar
St. John, S. J. & Smith, D. V. (1999) Salt taste discrimination by rats depends upon differential responses across gustatory neuron types. Chemical Senses 24:547–48.Google Scholar
Tateda, H. (1965) Sugar receptor and α-amino acid in the rat. In: Olfaction and taste, vol. II, ed. Hayashi, T., pp. 383–97. Pergamon.Google Scholar
Unschuld, P. U. (1993) Huang di nei jing su wen: Nature, knowledge, imagery in an ancient Chinese medical text University of California Press.Google Scholar
von Helmholtz, H. (1924) Physiological optics, trans. Southall, J. P. C.. Optical Society of America.Google Scholar
Woolston, D. C. & Erickson, R. P. (1979) Concept of neuron types in gustation in the rat. Journal of Neurophysiology 42:1390–1409.CrossRefGoogle ScholarPubMed
Young, T. (1802) On the theory of light and colours. Philosophical Transactions, Royal Society of London 92:12–48.Google Scholar
Young, T. (1807/1961) On physical optics. A course of lectures on natural philosophy and the mechanical arts, I. In: Color vision, ed. Teevan, R. C. & Birney, R. C.. Van Nostrand.Google Scholar
Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., Zuker, C. S. & Ryba, J. P. (2003) Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112:293–301.CrossRefGoogle ScholarPubMed
Zhao, G. Q., Zhang, Y. F., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. P. & Zuker, C. S. (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–66.CrossRefGoogle ScholarPubMed