Molecular Tuning of Ion Binding to Calcium Signaling Proteins | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Ahmed, F. R., Rose, D. R., Evans, S. V., Pippy, M. E. & To, R. (1993). Refinement of recombinant oncomodulin at 1·30 Å resolution. J. Mol. Biol. 230, 1216–1224.CrossRefGoogle ScholarPubMed

Akke, M., Forsén, S. & Chazin, W. J. (1991). Molecular basis for co-operativity in Ca2+ binding to calbindin D9k: 1H nuclear magnetic resonance studies of (Cd2+),-bovine calbindin D9k. J. Mol. Biol. 220, 173–189.CrossRefGoogle ScholarPubMed

Akke, M., Drakenberg, T. & Chazin, W. J. (1992). Three-dimensional solution structure of Ca2+ -loaded porcine calbindin D9k determined by nuclear magnetic resonance spectroscopy. Biochemistry 31, 1011–1020.CrossRefGoogle ScholarPubMed

Akke, M., Skelton, N. J., Kördel, J., Palmer, A. G. & Chazin, W. J. (1993). Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry 32, 9832–9844.CrossRefGoogle ScholarPubMed

Almasio, M.-C., Arnaud-Neu, F. & Schwing-Weill, M.-J. (1983). Macrocyclic complexes of lanthanides: Stability and electrochemical behaviour in methanol and propylene carbonate. Helv. Chim. Acta 66, 1296–1306.CrossRefGoogle Scholar

Anderson, S. R. & Malencik, D. A. (1986). Peptides recognizing calmodulin. In Calcium and Cell Function, vol. 6 (ed. Cheung, W. Y.), pp. 1–42. Orlando: Acedemic Press.Google Scholar

Arnaud-Neu, F., Spiess, B. & Schwing-Weill, M.-J. (1977). Stability in aqueous solution of some complexes of heavy metals with diaza-polyoxamacrocyclic ligands. Helv. Chim. Acta 60, 2633–2643.CrossRefGoogle Scholar

Artalejo, C. R., Adams, M. E. & Fox, A. P. (1994). Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76.CrossRefGoogle ScholarPubMed

Ashley, C. C., Mulligan, I. P. & Lea, T. J. (1991). Ca2+ and activation mechanisms in skeletal muscle. Quart. Rev. Biophys. 24, 1–73.CrossRefGoogle ScholarPubMed

Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R. & Cook, W. J. (1985). Three-dimensional structure of calmodulin. Nature 315, 37–42.CrossRefGoogle ScholarPubMed

Babu, Y. S., Bugg, C. E. & Cook, W. J. (1988). Structure of calmodulin refined at 2·2 Å resolution. J. Mol. Biol. 204, 191–204.CrossRefGoogle ScholarPubMed

Babu, A., Su, H., Ryu, Y. & Gulati, J. (1992). Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering. J. Biol. Chem. 267, 15469–15474.CrossRefGoogle ScholarPubMed

Bachs, O., Agell, N. & Carafoli, E. (1992). Calcium and calmodulin function in the cell nucleus. Biochim. Biophys. Acta 1113, 259–270.CrossRefGoogle ScholarPubMed

Bading, H., Ginty, D. D. & Greenberg, M. E. (1993). Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.CrossRefGoogle ScholarPubMed

Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. & Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry 31, 5269–5278.CrossRefGoogle ScholarPubMed

Bennett, A. J. & Bagshaw, C. R. (1986). The kinetis of bivalent metal ion dissociation from myosin subfragments. Biochem. J. 233, 173–177.CrossRefGoogle Scholar

Blancuzzi, Y., Padilla, A., Parello, J. & Cave, A. (1993). Symmetrical rearrangement of the cation-binding sites of parvalbumin upon Ca2+/Mg2+ exchange. A study by 1H 2D NMR. Biochemistry 32, 1302–1309.CrossRefGoogle ScholarPubMed

Blechner, S. L., Olah, G. A., Strynadka, N. C. J., Hodges, R. S. & Trewhella, J. (1992). 4Ca2+ troponin C forms dimers in solution at neutral pH that dissociate upon binding various peptides: Small-angle X-ray scattering studies of peptide-induced structural changes. Biochemistry 31, 11326–11334.CrossRefGoogle ScholarPubMed

Breen, P. J., Johnson, K. A. & Horrocks, W. D. (1985). Stopped-flow kinetic studies of metal ion dissociation or exchange in a tryptophan-containing parvalbumin. Biochemistry 24, 4997–5004.CrossRefGoogle ScholarPubMed

Brittain, H. G., Richardson, F. S. & Martin, R. B. (1976). Terbium(III) emission as a probe of calcium(II) binding sites in proteins, J. Am. Chem. Soc. 98, 8255–8260.CrossRefGoogle ScholarPubMed

Brodin, P., Johansson, C., Forsén, S., Drakenberg, T. & Grundström, T. (1990). Functional properties of calbindin D9k mutants with exchanged Ca2+ binding sites. J. Biol. Chem. 265, 11125–11130.CrossRefGoogle ScholarPubMed

Buschmann, H.-J. (1986 a). The macrocyclic and cryptate effects. 7. Influence of structural changes on the complexation behaviour of aza crown ethers and cryptands in different solvents. Inorg. Chim. Ada 120, 125–129.CrossRefGoogle Scholar

Buschmann, H.-J. (1986 b). The macrocyclic and cryptate effects. 5. Complexation of alkali ions by monocyclic and bicyclic ligands in methanol. Inorg. Chim. Ada 125, 31–35.CrossRefGoogle Scholar

Carlström, G. & Chazin, W. J. (1993). Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding. J. Mol. Biol. 231, 415–430.CrossRefGoogle ScholarPubMed

Cave, A., Parello, J., Drakenberg, T., Thulin, E. & Lindman, B. (1979). Mg2+ binding to parvalbumins studied by 25Mg and 113Cd NMR spectroscopy. FEBS Lett. 100, 148–152.CrossRefGoogle ScholarPubMed

Chakrabarti, P. (1990). Interaction of metal ions with carboxylic and carboxamide groups in protein structures. Prot. Eng. 4, 49–56.CrossRefGoogle ScholarPubMed

Chao, S. H., Suzuki, Y., Zysk, J. R. & Cheung, W. Y. (1984). Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82.Google ScholarPubMed

Chattopadhyaya, R., Meador, W. E., Means, A. R. & Quiocho, F. A. (1992). Calmodulin structure refined at 1·7 Å resolution. J. Mol. Biol. 228, 1177–1192.CrossRefGoogle ScholarPubMed

Christensen, J. J., Eatough, D. J. & Izatt, R. M. (1975). Handbook of Metal Ligand Heats and Related Thermodynamic Quantities New York: Marcel Dekker, Inc.Google Scholar

Cohen, P., Burchell, A., Foulkes, J. G. & Cohen, P. T. W. (1978). Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett. 92, 287–293.CrossRefGoogle ScholarPubMed

Corson, D. C., Williams, T. C. & Sykes, B. D. (1983). Calcium binding proteins: Optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin. Biochemistry 22, 5882–5889.CrossRefGoogle ScholarPubMed

Cox, B. G., Garcia-Rosas, J. & Schneider, H. (1981). Solvent dependence of the kinetics of formation and dissociation of cryptate complexes. J. Am. Chem. Soc. 103, 1054–1059.CrossRefGoogle Scholar

Cox, B. G., van Truong, N. & Schneider, H. (1984). Alkaline earth cryptates: Dynamics and stabilities in different solvents. J. Am. Chem. Soc. 106, 1273–1280.CrossRefGoogle Scholar

Cox, B. G., Firman, P., Schneider, I. & Schneider, H. (1988). Rates and equilibria of alkaline-earth-metal complexes with diaza crown ethers in methanol. Inorg. Chem. 27, 4018–4021.CrossRefGoogle Scholar

Cox, B. G. & Schneider, H. (1992). Coordination and transport proterties of macrocyclic compounds in solution. of the series Studies in Physical and Theoretical Chemistry. 76, Amsterdam: Elsevier.Google Scholar

Cram, D. J., Kaneda, T., Helgeson, R. C. & Lein, G. M. (1979). Spherands – Ligands whose binding of cations relieves enforced electron–electron repulsions. J. Am. Chem. Soc. 101, 6752–6254.CrossRefGoogle Scholar

Cram, D. J. & Lein, G. M. (1985). Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria. J. Am. Chem. Soc. 107, 3657–3668.CrossRefGoogle Scholar

Cronce, D. T. & Horrocks, W. D. (1992). Probing the metal-binding sites of cod parvalbumin using europium(III) ion luminescence and diffusion-enhanced energy transfer. Biochemistry 31, 7963–7969.CrossRefGoogle ScholarPubMed

Curmi, P. M. G., Barden, J. A. & Dos Remedios, C. G. (1982). Conformational studies of G-actin containing bound lanthanide. Eur. J. Biochem. 122, 239–244.CrossRefGoogle ScholarPubMed

Dalgarno, D. C., Klevit, R. E., Levine, B. A., Scott, G. M. M., Williams, R. J. P., Gergely, J., Grabarek, Z., Leavis, P. C., Grand, R. J. A. & Drabikowski, W. (1984). The nature of the trifluoperazine binding sites on calmodulin and troponin-C. Biochim. Biophys. Acta 791, 164–172.CrossRefGoogle ScholarPubMed

Dasgupta, M., Honeycutt, T. & Blumenthal, D. K. (1989). The γ-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J. Biol. Chem. 264, 17156–17163.CrossRefGoogle ScholarPubMed

Davis, T. N., Urdea, M. S., Masiarz, F. R. & Thorner, J. (1986). Isolation of the yeast calmodulin gene: Calmodulin is an essential protein. Cell 47, 423–431.CrossRefGoogle ScholarPubMed

Declercq, J.-P., Tinant, B., Parello, J. & Rambaud, J. (1991). Ionic interactions with parvalbumins. Crystal structure determination of pike 4·10 parvalbumin in four different ionic environments. J. Mol. Biol. 220, 1017–1039.CrossRefGoogle ScholarPubMed

Degrado, W. F. (1988). Design of peptides and proteins. Adv. Prot. Chem. 39, 51–124.Google ScholarPubMed

Diebler, H., Eigen, M., Ilgenfritz, G., Maab, G. & Winkler, R. (1969). Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure & Appl. Chem. 20, 93–115.CrossRefGoogle Scholar

Drabikowski, W., Brzeska, H. & Venyaminov, S. Y. (1982). Tryptic fragments of calmodulin. Ca2+- and Mg2+-induced conformational changes. J. Biol. Chem. 257, 11584–11590.CrossRefGoogle ScholarPubMed

Durussel, I., Rhyner, J. A., Strehler, E. E. & Cox, J. A. (1993). Cation binding and conformation of human calmodulin-like protein. Biochemistry 32, 6089–6094.CrossRefGoogle ScholarPubMed

Eigen, M. (1965). Fast elementary steps in chemical reaction mechanisms. Pure & Appl. Chem. 6, 97–115.CrossRefGoogle Scholar

Einspahr, H. & Bugg, C. E. (1981). The geometry of calcium-carboxylate interactions in crystalline complexes. Acta Cryst. B37, 1044–1052.CrossRefGoogle Scholar

Einspahr, H. & Bugg, C. E. (1984). Crystal structure studies of calcium complexes and implications for biological systems. In Metal Ions in Biological Systems, vol. 17 (ed. Sigel, H.), pp. 51–97. New York: Marcel Dekker, Inc.Google Scholar

Evans, C. H. (1990). Biochemistry of the lanthanides. of the series Biochemistry of the elements. 8, New York: Plenum Press.CrossRefGoogle Scholar

Falke, J. J., Snyder, E. E., Thatcher, K. C. & Voertler, C. S. (1991). Quantitating and engineering the ion specificity of an EF-hand-like Ca2+ binding site. Biochemistry 30, 8690–8697.CrossRefGoogle Scholar

Forsén, S., Linse, S., Thulin, E., Lindegård, B., Martin, S. R., Bayley, P. M., Brodin, P. & Grundström, T. (1988). Kinetics of calcium binding to calbindin mutants. Eur. J. Biochem. 177, 47–52.CrossRefGoogle ScholarPubMed

Forsén, S., Linse, S., Drakenberg, T., Kördel, J., Akke, M., Sellers, P., Johansson, C., Thulin, E., Andersson, I., Brodin, P., Grundström, T., Skelton, N. J. & Chazin, W. J. (1991). Ca2+ binding in proteins of the calmodulin superfamily: Cooperativity, electrostatic contributions and molecular mechanisms. In Protein Conformatiom, Ciba Foundation Symp. vol. 161 pp. 222–236. Chichester: Wiley.Google Scholar

Gandour, R. D. (1981). On the importance of orientation in general base catalysis by carboxylate. Bioorg. Chem. 10, 169–176.CrossRefGoogle Scholar

Gariepy, J. & Hodges, R. S. (1983). Localization of a trifluoperazine binding site on troponin C. Biochemistry 22, 1586–1594.CrossRefGoogle ScholarPubMed

Geiser, J. R., van Tuinen, D., Brockerhoff, S. E., Neff, M. M. & Davis, T. N. (1991). Can calmodulin function without binding calcium? Cell 65, 949–959.CrossRefGoogle ScholarPubMed

Gerig, J. T., Singh, P., Levy, L. A. & London, R. E. (1987). Calcium complexation with a highly calcium selective chelator: Crystal structure of Ca(CaFBAPTA) 5H2O. J. Inorg. Biochem. 31, 113–121.CrossRefGoogle Scholar

Gnegy, M. E. (1993). Calmodulin in neurotransmitter and hormone action. Annu. Rev. Pharmacol. Toxicol. 32, 45–70.CrossRefGoogle Scholar

Greaser, M. L. & Gergely, J. (1973). Purification and properties of the components from troponin. J. Biol. Chem. 248, 2125–2133.CrossRefGoogle ScholarPubMed

Haiech, J., Kilhoffer, M.-C., Lukas, T. J., Craig, T. A., Roberts, D. M. & Watterson, D. M. (1991). Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. J. Biol. Chem. 266, 3427–3431.CrossRefGoogle ScholarPubMed

Hanson, P. I. & Schulman, H. (1992). Neuronal Ca2+/calmodulin-dependent protein kinases. Annu. Rev. Biochem. 61, 559–601CrossRefGoogle ScholarPubMed

Herzberg, O. & James, M. N. G. (1988). Refined crystal structure of troponin C from turkey skeletal muscle at 2·0 Å resolution. J. Mol. Biol. 203, 761–779.CrossRefGoogle ScholarPubMed

Herzberg, O., Moult, J. & James, M. N. G. (1986). A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J. Biol. Chem. 261, 2638–2644.CrossRefGoogle Scholar

Holtje, H. D. & Mense, M. A. (1989). A molecular modelling study on binding of drugs to calmodulin. J. Comput.-Aided Mol. Design 3, 101–109.CrossRefGoogle Scholar

Horrocks, W. D. & Albin, M. (1984). Lanthanide ion luminescence in coordination chemistry and biochemistry. Prog. Inorg. Chem., 31, 1–104.CrossRefGoogle Scholar

Hou, T.-T., Johnson, J. D. & Rall, J. A. (1992). Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J. Physiol. (Lond.) 449, 399–410.CrossRefGoogle ScholarPubMed

Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B. & Bax, A. (1992). Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–637.CrossRefGoogle ScholarPubMed

Isac, M., Morano, I. & Rüegg, J. C. (1988). Alteration of calcium sensitivity of skinned frog skeletal muscle fibres by inositol triphosphate and calmodulin antagonists. Pflügers Arch. 412, 253–257.CrossRefGoogle ScholarPubMed

Jackson, A. P., Timmerman, M. P., Bagshaw, C. R. & Ashley, C. C. (1987). The kinetics of calcium binding to fura-2 and indo-1. FEBS Lett 216, 35–39.CrossRefGoogle ScholarPubMed

Johansson, C., Brodin, P., Grunström, T., Thulin, E., Forsén, S. and Drakenberg, T. (1990). Biophysical studies of engineered mutant proteins based on calbindin D9k modified in the pseudo EF-hand. Eur. J. Biochem. 187, 455–460.CrossRefGoogle ScholarPubMed

Johnson, J. D., Holroyde, M. J., Crouch, T. H., Solaro, R. J. & Potter, J. D. (1981). Fluorescence studies of the interaction of calmodulin with myosin light chain kinase. J. Biol. Chem. 256, 12194–12198.CrossRefGoogle ScholarPubMed

Kasprzyk, S. P. & Wilkins, R. G. (1982). Kinetics of interaction of metal ions with two tetraaza tetraacetate macrocycles. Inorg. Chem. 21, 3349–3352.CrossRefGoogle Scholar

Kataoka, M., Head, J. F., Seaton, B. A. & Engelman, D. M. (1989). Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proc. Natl. Acad. Sci. USA 86, 6944–6948.CrossRefGoogle ScholarPubMed

Kataoka, M., Head, J. F., Vorherr, T., Krebs, J. & Carafoli, E. (1991). Small-angle X-ray scattering study of calmodulin bound to two peptides corresponding to parts of the calmodulin-binding domain of the plasma membrane Ca2+ pump. Biochemistry 30, 6247–6251.CrossRefGoogle ScholarPubMed

Kauffmann, E., Lehn, J.-M. & Sauvage, J.-P. (1976). Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes. Helv. Chim. Acta 59, 1099–1111.CrossRefGoogle Scholar

Kebarle, P. (1977). Ion thermochemistry and solvation from gas phase ion equilibria. Ann. Rev. Phys. Chem. 28, 445–476.CrossRefGoogle Scholar

Kim, M.-S., Morii, T., Sun, L.-X., Imoto, K. & Mori, Y. (1993). Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318, 145–148.CrossRefGoogle ScholarPubMed

Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G. & Chazin, W. J. (1992). Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry 31, 4856–4866.CrossRefGoogle ScholarPubMed

Kretsinger, R. H. & Nakayama, S. (1993). Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins. J. Mol. Evol. 36, 477–488.CrossRefGoogle Scholar

Krudy, G. A., Brito, R. M. M., Putkey, J. A. & Rosevear, P. R. (1992). Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding. Biochemistry 31, 1595–1602.CrossRefGoogle ScholarPubMed

Kumar, V. D., Lee, L. & Edwards, B. F. P. (1990). Refined crystal structure of calcium-liganded carp parvalbumin 4·25 at 1·5-Å resolution. Biochemistry 29, 1404–1412.CrossRefGoogle ScholarPubMed

Kurebayashi, N. & Ogawa, Y. (1988). Increase by trifluoperazine in calcium sensitivity of myofibrils in a skinned fibre from frog skeletal muscle. J. Physiol. 403, 407–424.CrossRefGoogle Scholar

Leavis, P. C. & Kraft, E. L. (1978). Calcium binding to cardiac troponin C. Arch. Biochem. Biophys. 186, 411–415.CrossRefGoogle ScholarPubMed

Lechleiter, J., Girard, S., Clapham, D. & Peralta, E. (1991). Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature 350, 505–508.CrossRefGoogle ScholarPubMed

Lehn, J.-M. (1980). Dinuclear cryptates: Dimetallic macropolycyclic inclusion complexes. Pure & Appl. Chem. 52, 2441–2459.CrossRefGoogle Scholar

Lehn, J.-M. & Sauvage, J. P. (1975). [2]-Cryptates: Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97, 6700–6707.CrossRefGoogle Scholar

Lehn, J.-M. & Montavon, F. (1978). Cryptates. XXV). Stability and selectivity of cation inclusion complexes of polyaza-macrobicyclic ligands. Selective complexation of toxic heavy metal cations. Helv. Chim. Acta 61, 67–82.CrossRefGoogle Scholar

Linse, S., Brodin, P., Drakenberg, T., Thulin, E., Sellers, P., Elmdén, K., Grundström, T. & Forsén, S. (1987). Structure-function relationships in EF-hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry 26, 6723–6735.CrossRefGoogle ScholarPubMed

Linse, S., Brodin, P., Johansson, C., Thulin, E., Grundström, T. & Forsén, S. (1988). The role of protein surface charges in ion binding. Nature 335, 651–652.CrossRefGoogle ScholarPubMed

Linse, S., Teleman, O. & Drakenberg, T. (1990). Ca2+ binding to calbindin D9k strongly affects backbone dynamics: Measurements of exchange rates of individual amide protons using 1H NMR. Biochemistry 29, 5925–5934.CrossRefGoogle ScholarPubMed

Linse, S., Johansson, C., Brodin, P., Grundström, T., Drakenberg, T. & Forsén, S. (1991 a). Electrostatic contributions to the binding of Ca2+ in calbindin D9k. Biochemistry 30, 154–162.CrossRefGoogle Scholar

Linse, S., Helmersson, A. & Forsén, S. (1991 b). Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 266, 8050–8054.CrossRefGoogle ScholarPubMed

Loyola, V. M., Pizer, R. & Wilkins, R. G. (1977). The kinetics of complexing of the alkaline-earth ions with several cryptands. J. Am. Chem. Soc. 99, 7185–7188.CrossRefGoogle Scholar

Lu, K. P. & Means, A. R. (1993). Regulation of the cell cycle by calcium and calmodulin. Endocr. Rev. 14, 40–58.CrossRefGoogle ScholarPubMed

Lugnier, C., Follenius, A., Gerard, D. & Stoclet, J. C. (1984). Bepridil and flunarizine as calmodulin inhibitors. Eur. J. Pharmacol. 98, 157–158.CrossRefGoogle ScholarPubMed

MacLachlan, L. K., Reid, D. G., Mitchell, R. C., Salter, C. J. & Smith, S. J. (1990). Binding of a calcium sensitizer, bepridil, to cardiac troponin C. A fluorescence stopped-flow kinetic, circular dichroism, and proton nuclear magnetic resonance study. J. Biol. Chem. 265, 9764–9770.CrossRefGoogle ScholarPubMed

MacManus, J. P., Hutnik, C. M. L., Sykes, B. D., Szabo, A. G., Williams, T. C. & Banville, D. (1989). Characterization and site-specific mutagenesis of the calcium-binding protein oncomodulin produced by recombinant bacteria. J. Biol. Chem. 264, 3470–3477.CrossRefGoogle ScholarPubMed

Marcus, Y. (1985). Ion Solvation. Chichester: John Wiley & Sons Limited.Google Scholar

Marsden, B. J., Hodges, R. S. & Sykes, B. D. (1989). A 1H NMR determination of the solution conformation of a synthetic peptide analogue of calcium-binding site III of rabbit skeletal troponin C. Biochemistry 28, 8839–8847.CrossRefGoogle ScholarPubMed

Marsden, B. J., Shaw, G. S. & Sykes, B. D. (1990). Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochem. Cell. Biol. 68, 587–601.CrossRefGoogle ScholarPubMed

Marshall, L., Parris, K., Rebek, J., Luis, S. V. & Burguete, M. I. (1988). A new class of chelating agents. J. Am. Chem. Soc. 110, 5192–5193.CrossRefGoogle Scholar

Martin, R. B. (1984). Bioinorganic Chemistry of Calcium. In Metal Ions in Biological Systems, vol. 17 (ed. Sigel, H.), pp. 1–49. New York: Marcel Dekker, Inc.Google Scholar

Martin, S. R., Andersson Teleman, A., Bayley, P. M., Drakenberg, T. & Forsén, S. (1985). Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur. J. Biochem. 151, 543–550.CrossRefGoogle ScholarPubMed

Martin, S. R., Linse, S., Johansson, C., Bayley, P. M. & Forsén, S. (1990). Protein surface charges and Ca2+ binding to individual sites in calbindin D9k: Stopped-flow studies. Biochemistry 29, 4188–4193.CrossRefGoogle ScholarPubMed

Massom, L., Lee, H. & Jarrett, H. W. (1990). Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochemistry 29, 671–681.CrossRefGoogle ScholarPubMed

Massom, L. R., Lukas, T. J., Persechini, A., Kretsinger, R. H., Watterson, D. M. & Jarrett, H. W. (1991). Trifluoperazine binding to mutant calmodulins. Biochemistry 30, 663–667.CrossRefGoogle ScholarPubMed

Mathieu, F., Metz, B., Moras, D. & Weiss, R. (1978). Cavities in macrobicyclic ligands and complexation selectivity. Crystal structures of two cryptates, [Na+. 221].SCN− and [K+.221].SCN−. J. Am. Chem. Soc. 100, 4412–4416.CrossRefGoogle Scholar

Maune, J. F., Klee, C. B. & Beckingham, K. (1992). Ca2+ binding and conformational change in two series of point mutations to the individual Ca2+-binding sites of calmodulin. J. Biol. Chem. 267, 5286–5295.CrossRefGoogle Scholar

Meador, W. E., Means, A. R. & Quiocho, F. A. (1992). Target enzyme recognition by calmodulin: 2·4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255.CrossRefGoogle ScholarPubMed

Meador, W. E., Means, A. R. & Quiocho, F. A. (1993). Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structure. Science 262, 1718–1721.CrossRefGoogle Scholar

Means, A. R., VanBerkum, M. F. A., Bagchi, I., Lu, K. P. & Rasmussen, C. D. (1991). Regulatory functions of calmodulin. Pharmac. Ther. 50, 255–270.CrossRefGoogle ScholarPubMed

Minowa, O. & Yagi, K. (1984). Calcium binding to tryptic fragments of calmodulin. J. Biochem. (Tokyo) 96, 1175–1182.CrossRefGoogle ScholarPubMed

Moeschler, H. J., Schaer, J.-J. & Cox, J. A. (1980). A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin. Eur.J. Biochem. 111, 73–78.CrossRefGoogle ScholarPubMed

Moncrief, N. D., Kretsinger, R. H. & Goodman, M. (1990). Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. Mol. Evol. 30, 522–562.CrossRefGoogle ScholarPubMed

Monera, O. D., Shaw, G. S., Zhu, B.-Y., Sykes, B. D., Kay, C. M. & Hodges, R. S. (1992). Role of interchain α-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C. Prot. Sci. 1, 945–955.CrossRefGoogle ScholarPubMed

Nakayama, S. & Kretsinger, R. H. (1993). Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: Calmodulin dendrograms show significant lack of parallelism. J. Mol. Evol. 36, 458–476.CrossRefGoogle ScholarPubMed

Nakayama, S., Moncrief, N. D. & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J. Mol. Evol. 34, 416–448.CrossRefGoogle ScholarPubMed

Needham, J. V., Chen, T. Y. & Falke, J. J. (1993). Novel ion specificity of a caboxylate cluster Mg(II) binding site: Strong charge selectivity and weak size selectivity. Biochemistry 32, 3363–3367.CrossRefGoogle Scholar

O'Neil, K. T. & DeGardo, W. F. (1989). The interaction of calmodulin with fluorescent and photoreactive model peptides: Evidence for a short interdomain separation. Proteins 6, 284–293.CrossRefGoogle ScholarPubMed

O'Neil, K. T. & DeGrado, W. F. (1990). How calmodulin binds its targets: Sequence independent recognition of amphiphilic α-helices. Trends Biol. Sci. 15, 59–64.CrossRefGoogle ScholarPubMed

Olwin, B. B. & Storm, D. R. (1985). Calcium binding to complexes of calmodulin and calmodulin binding proteins. Biochemistry 24, 8081–8086.CrossRefGoogle ScholarPubMed

Ovaska, M. & Taskinen, J. (1991). A model for human cardiac troponin C and for modulation of its Ca2+ affinity by drugs. Proteins 11, 79–94.CrossRefGoogle Scholar

Padilla, A., Cave, A. & Parello, J. (1988). Two-dimensional 1H nuclear magnetic resonance study of pike pl 5·0 parvalbumin (Esox lucius). Sequential resonance assignments and folding of the polypeptide chain. J. Mol. Biol. 204, 995–1017.CrossRefGoogle Scholar

Palmisano, W. A., Treviño, C. L. & Henzl, M. T. (1990). Site-specific replacement of amino acid residues within the CD binding loop of rat oncomodulin. J. Biol. Chem. 265, 14450–14456.CrossRefGoogle ScholarPubMed

Pechère, J.-F., Derancourt, J. & Haiech, J. (1977). The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle. FEBS Lett. 75, 111–114.CrossRefGoogle ScholarPubMed

Pedersen, C. J. (1967). Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036.CrossRefGoogle Scholar

Pflugrath, J. W. & Quiocho, F. A. (1985). Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound soley by hydrogen bonds. Nature 314, 257–260.CrossRefGoogle Scholar

Potter, J. D. & Johnson, J. D. (1982). Troponin. In Calcium and Cell Function, vol. 2 (ed. Cheung, W. Y.), pp. 145–173. New York: Academic Press.CrossRefGoogle Scholar

Premack, B. A. & Gardner, P. (1992). Signal transduction by T-cell receptors: Mobilization of Ca and regulation of Ca-dependent effector molecules. Am. J. Physiol. 263, C1119–C1140.CrossRefGoogle ScholarPubMed

Putkey, J. A., Sweeney, H. L. & Campbell, S. T. (1989). Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J. Biol. Chem. 264, 12370–12378.CrossRefGoogle ScholarPubMed

Rao, S. T., Wu, S., Satyshur, K. A., Ling, K.-Y., Kung, C. & Sundaralingam, M. (1993). Structure of Paramecium Tetraurelia calmodulin at 1·8 Å resolution. Prot. Sci. 2, 436–447.CrossRefGoogle ScholarPubMed

Rashin, A. A. & Honig, B. (1985). Re-evaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588–5593.CrossRefGoogle Scholar

Reid, R. E. (1985). The functional nature of calcium binding units in calmodulin, troponin C and parvalbumin. J. Theor. Biol. 114, 353–374.CrossRefGoogle ScholarPubMed

Reid, R. E. (1990). Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. J. Biol. Chem. 265, 5971–5976.CrossRefGoogle Scholar

Reid, R. E., Gariépy, J., Saund, A. K. & Hodges, R. S. (1981). Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J. Biol. Chem. 256, 2742–2751.CrossRefGoogle ScholarPubMed

Renner, M., Danielson, M. A. & Falke, J. J. (1993). Kinetic control of Ca(II) signaling: Tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc. Natl. Acad. Sci., USA 90, 6493–6497.CrossRefGoogle ScholarPubMed

Robertson, S. P., Johnson, J. D. & Potter, J. D. (1981). The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys. J. 34, 559–569.CrossRefGoogle ScholarPubMed

Roquet, F., Declercq, J.-P., Tinant, B., Rambaud, J. & Parello, J. (1992). Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an α-parvalbumin. J. Mol. Biol. 223, 705–720.CrossRefGoogle ScholarPubMed

Rosenfeld, S. S. & Taylor, E. W. (1985). Kinetic studies of calcium and magnesium binding to troponin C. J. Biol. Chem. 260, 242–251.CrossRefGoogle ScholarPubMed

Satyshur, K. A., Rao, S. T., Pyzalska, D., Drendel, W., Greaser, M. & Sundaralingam, M. (1988). Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-Å resolution. J. Biol. Chem. 263, 1628–1647.CrossRefGoogle ScholarPubMed

Schauer, C. K. & Anderson, O. P. (1987). Calcium-selective ligands. 2. Structural and spectroscopic studies on calcium and cadmium complexes of EGTA4−. J. Am. Chem. Soc. 109, 3646–3656.CrossRefGoogle Scholar

Schmid, R. W. & Reilley, C. N. (1957). New complexon for titration of calcium in the presence of magnesium. Anal. Chem. 29, 264–268.CrossRefGoogle Scholar

Sekharudu, Y. C. & Sundaralingam, M. (1988). A structure-function relationship for the calcium affinities of regulatory proteins containing ‘EF-hand’ pairs. Prot. Eng. 2, 139–146.CrossRefGoogle ScholarPubMed

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767.CrossRefGoogle Scholar

Shaw, G. S., Hodges, R. S. & Sykes, B. D. (1990). Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science 249, 280–283.CrossRefGoogle ScholarPubMed

Shaw, G. S., Golden, L. F., Hodges, R. S. & Sykes, B. D. (1991). Interactions between paired calcium-binding sites in proteins: NMR determination of the stoichiometry of calcium binding to a synthetic troponin-C peptide. J. Am. Chem. Soc. 113, 5557–5563.CrossRefGoogle Scholar

Silver, P. J., Pinto, P. B. & Dachiw, J. (1986). Modulation of vascular and cardiac contractile protein regulatory mechanism by calmodulin inhibitors and related compounds. Biochem. Pharmacol. 35, 2545–2551.CrossRefGoogle ScholarPubMed

Skelton, N. J., Kördel, J., Akke, M. & Chazin, W. J. (1992). Nuclear magnetic resonance studies of the internal dynamics in Apo, (Cd2+)1 and (Ca2+)2. calbindin D9k. The rates of amide proton exchange with solvent. J. Mol. Biol. 227, 1100–1117.CrossRefGoogle Scholar

Smith, P. D., Liesegang, G. W., Berger, R. L., Czerlinski, G. & Podolsky, R. J. (1984). A stopped-flow investigation of calcium ion binding by ethylene glycol bis(β-aminoethyl ether)-N, N'-tetraacetic acid. Anal. Biochem. 143, 188–195.CrossRefGoogle ScholarPubMed

SNYDER, E. E., Buoscio, B. W. & Falke, J. J. (1990). Calcium(II) site specificity: Effect of size and charge on metal ion binding to an EF-hand-like site. Biochemistry 29, 3937–3943.CrossRefGoogle Scholar

Solaro, R. J., Bousquet, P. & Johnson, J. D. (1986). Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca2+ binding by bepridil. J. Pharmacol. Exp. Ther. 238, 502–507.Google Scholar

Starovasnik, M. A., Su, D.-R., Beckingham, K. & Klevit, R. E. (1992). A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Prot. Sci. 1, 245–253.CrossRefGoogle ScholarPubMed

Stock, A. M., Martinez-Hackert, E., Rasmussen, B. F., West, A. H., Stock, J. B., Ringe, D. & Petsko, G. A. (1993). Structure of the Mg2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32, 13375–13380.CrossRefGoogle ScholarPubMed

Strynadka, N. C. J. & James, M. N. G. (1988). Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modelling with troponin-C. Proteins 3, 1–17.CrossRefGoogle ScholarPubMed

Strynadka, N. C. J. & James, M. N. G. (1989). Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58, 951–998.CrossRefGoogle ScholarPubMed

Summers, M. F. (1988). 113Cd NMR spectroscopy of coordination compounds and proteins. Coord. Chem. Rev. 86, 43–134.CrossRefGoogle Scholar

Sussman, F. & Weinstein, H. (1989). On the ion selectivity in Ca-binding proteins: The cyclo(-L-Pro-Gly-)3 peptide as a model. Proc. Natl. Acad. Sci. U.S.A 86, 7880–7884.CrossRefGoogle ScholarPubMed

Svensson, L. A., Thulin, E. & Forsén, S. (1992). Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J. Mol. Biol. 223, 601–606.CrossRefGoogle ScholarPubMed

Swain, A. L., Kretsinger, R. H. & Amma, E. L. (1989). Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1·6-Å resolution. J. Biol. Chem. 264, 16620–16628.CrossRefGoogle ScholarPubMed

Taylor, D. A., Sack, J. S., Maune, J. F., Beckingham, K. & Quiocho, F. A. (1991). Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2·2-Å resolution. J. Biol. Chem. 266, 21375–21380.CrossRefGoogle ScholarPubMed

Teleman, A., Drakenberg, T. & Forsén, S. (1986). Kinetics of Ca2+ binding to calmodulin and its tryptic fragments studied by 43Ca-NMR. Biochim. Biophys. Acta 873. 204–213.CrossRefGoogle ScholarPubMed

Tkachev, V. V., Atovmyan, L. O., Zubareva, V. E. & Raevskii, O. A. (1987). Crystal structure of 18-crown-6. Koord. Khim. 13, 264.Google Scholar

Trewhella, J. (1992). The solution structures of calmodulin and its complexes with synthetic peptides based on target enzyme binding domains. Cell Calcium 13, 377–390.CrossRefGoogle ScholarPubMed

Trewhella, J., Blumenthal, D. K., Rokop, S. E. & Seeger, P. A. (1990). Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry 20, 9316–9324.CrossRefGoogle Scholar

Trigo-Gonzalez, G., Awang, G., Racher, K., Neden, K. & Borgford, T. (1993). Helix variants of troponin C with tailored calcium affinities. Biochemistry 32, 9826–9831.CrossRefGoogle ScholarPubMed

Trueblood, K. N., Maverick, E. F. & Knobler, C. B. (1991). Structure of the spherand 6, 12, 18, 24, 30, 36-hexamethoxy-3, 9, 15, 21, 27, 33-hexamethyl[oׂ6]metacyclophane, C48H48O6, and of three related spherands and spherand complexes: C48H48O6ׂLiCl, C48H48O6ׂNaSO4CH3ׂC6H5CH3 and C42H30F6ׂ2CH2Cl2. Acta Cryst B47, 389–398.CrossRefGoogle Scholar

Tsai, M.-D., Drakenberg, T., Thulin, E. & Forsén, S. (1987). Is the binding of magnesium(II) to calmodulin significant? An investigation by magnesium-25 nuclear magnetic resonance. Biochemistry 26, 3635–3643.CrossRefGoogle ScholarPubMed

Tsien, R. Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.CrossRefGoogle ScholarPubMed

Tsien, R. W. & Tsien, R. Y. (1990). Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715–760.CrossRefGoogle ScholarPubMed

Tsunoda, Y. (1993). Receptor-operated Ca2+ signaling and crosstalk in stimulus secretion coupling. Biochim. Biophys. Acta 1154, 105–156.CrossRefGoogle ScholarPubMed

Ungaro, R., El Haj, B. & Smid, J. (1976). Substituent effects on the stability of cation complexes of 4'-substituted monobenzo crown ethers. J. Am. Chem. Soc. 98, 5198–5202.CrossRefGoogle Scholar

van Eerd, J. P. & Takahashi, K. (1976). Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15, 1171–1180.CrossRefGoogle ScholarPubMed

Vijay-Kumar, S. & Cook, W. J. (1992). Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2·0 Å resolution. J. Mol. Biol. 224, 413–426.CrossRefGoogle ScholarPubMed

Villereal, M. L. & Byron, K. L. (1992). Calcium signals in growth factor signal transduction. Rev. Physiol. Biochem. Pharmacol. 119, 68–121.Google ScholarPubMed

Vogtle, F. & Weber, E. (1980). Crown ethers – complexes and selectivity. In The Chemistry of Functional Groups, Suppl. E, Part 1. (ed. Patai, S.), pp. 59–156. Chichester: John Wiley & Sons.Google Scholar

Vyas, N. K., Vyas, M. N. & Quiocho, F. A. (1987). A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature 327, 635–638.CrossRefGoogle ScholarPubMed

Vyas, N. K., Vyas, M. N. & Quiocho, F. A. (1988). Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242, 1290–1295.CrossRefGoogle ScholarPubMed

Vyas, M. N., Jacobson, B. L. & Quiocho, F. A. (1989). The calcium-binding site in the galactose chemoreceptor protein. J. Biol. Chetn. 264, 20817–20821.CrossRefGoogle ScholarPubMed

Waltersson, Y., Linse, S., Brodin, P. & Grundström, T. (1993). Mutational effects on the cooperativity of Ca+2 binding in calmodulin. Biochemistry 32, 7866–7871.CrossRefGoogle ScholarPubMed

Wang, C.-L. A. & Leavis, P. C. (1990). Distance measurements in cardiac troponin C. Arch. Biochem. Biophys. 276, 236–241.CrossRefGoogle ScholarPubMed

Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1984). Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. Biochemistry 23, 6410–6415.CrossRefGoogle ScholarPubMed

Wang, C.-L. A., Wang, L.-W. C., Xu, S., Lu, R. C., Saavedra-Alanis, V. & Bryan, J. (1991). Localization of the calmodulin- and the actin-binding sites of caldesmon. J. Biol. Chem. 266, 9166–9172.CrossRefGoogle ScholarPubMed

Wang, C.-K., Liao, R. & Cheung, H. C. (1993). Rotational dynamics of skeletal muscle troponin C. J. Biol. Chem. 268, 14671–14677.CrossRefGoogle ScholarPubMed

Wendt, B., Hofmann, T., Martin, S. R., Bayley, P., Brodin, P., Grundström, T., Thulin, E., Linse, S. & Forsén, S. (1988). Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. Eur. J. Biochem. 175, 439–445.CrossRefGoogle Scholar

Williams, R. J. P. (1980). A general introduction to the special properties of the calcium ion and their deployment in biology. In Calcium Binding Proteins: Structure and Function, (ed. Siegel, F. L., Carafoli, E., Kretsinger, R. H., MacLennan, D. H. & Wasserman, R. H.), pp. 3–10. Amsterdam: Elsevier.Google Scholar

Williams, T. C., Corson, D. C. & Sykes, B. D. (1984). Calcium-binding proteins: Calcium(II)-lanthanide(III) exchange in carp pravalbumin. J. Am. Chem. Soc. 106, 5698–5702.CrossRefGoogle Scholar

Yagi, K., Yazawa, M., Ikura, M. & Hikichi, K. (1989). Interaction between calmodulin and target proteins. Adv. Exp. Med. Biol. 255, 147–154.CrossRefGoogle ScholarPubMed

Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J.-F. & Tsien, R. W. (1993). Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161.CrossRefGoogle ScholarPubMed

Yazawa, M., Ikura, M., Hikichi, K., Ying, L. & Yagi, K. (1987). Communication between two globular domains of calmodulin in the presence of mastoparan or caldesmon fragment. Ca2+ binding and 1H NMR. J. Biol. Chem. 262, 10951–10954.CrossRefGoogle ScholarPubMed

Yazawa, M., Vorherr, T., James, P., Carafoli, E. & Yagi, K. (1992). Binding of calcium by calmodulin: Influence of the calmodulin binding domain of the plasma membrane calcium pump. Biochemistry 31, 3171–3176.CrossRefGoogle ScholarPubMed

Yee, E. L., Gansow, O. A. & Weaver, M. J. (1980). Electrochemical studies of europium and ytterbium cryptate formation in aqueous solution. Effects of varying the metal oxidation state upon cryptate thermodynamics and kinetics. J. Am. Chem. Soc. 102, 2278–2285.CrossRefGoogle Scholar