Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes (original) (raw)

References

  1. Kraner, S. D., Chong, J. A., Tsay, H. J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9, 37– 44 (1992).
    Article CAS Google Scholar
  2. Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).
    Article CAS Google Scholar
  3. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).
    Article CAS Google Scholar
  4. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).
    Article CAS Google Scholar
  5. Schoenherr, C. J., Paquette, A. J. & Anderson, D. J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl. Acad. Sci. USA 93, 9881–9886 ( 1996).
    Article CAS Google Scholar
  6. Myers, S. J. et al. Transcriptional regulation of the GluR2 gene: Neural-specific expression, multiple promoters, and regulatory elements. J. Neurosci. 18, 6723–6739 ( 1998).
    Article CAS Google Scholar
  7. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat. Genet. 20, 136–42 (1998).
    Article CAS Google Scholar
  8. Timmusk, T., Palm, K., Lendahl, U. & Metsis, M. Brain-derived neurotrophic factor expression in vivo is under the control of neuron-restrictive silencer element. J. Biol. Chem. 274, 1078– 1084 (1999).
    CAS PubMed Google Scholar
  9. Kallunki, P., Edelman, G. M. & Jones, F. S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl. Acad. Sci. USA 95, 3233–3238 (1998).
    Article CAS Google Scholar
  10. Palm, K., Belluardo, N., Metsis, M. & Timmusk, T. Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J. Neurosci. 18, 1280– 1296 (1998).
    Article CAS Google Scholar
  11. Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49– 55 (1997).
    Article CAS Google Scholar
  12. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 ( 1997).
    Article CAS Google Scholar
  13. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).
    Article CAS Google Scholar
  14. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).
    Article CAS Google Scholar
  15. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463– 473 (1998).
    Article CAS Google Scholar
  16. Nomura, T. et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by mad and thyroid hormone receptor. Genes Dev. 13, 412–423 ( 1999).
    Article CAS Google Scholar
  17. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E. & Schreiber, S. L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395, 917–921 ( 1998).
    Article CAS Google Scholar
  18. Kadosh, D. & Struhl, K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell Biol. 18, 5121 –5127 (1998).
    Article CAS Google Scholar
  19. Ashraf, S. I. & Ip, Y. T. Transcriptional control: repression by local chromatin modification. Curr Biol. 8, R683–686 (1998).
    Article CAS Google Scholar
  20. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).
    Article CAS Google Scholar
  21. Utley, R. T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498 –502 (1998).
    Article CAS Google Scholar
  22. Imhof, A. & Wolffe, A. P. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8, R422–424 (1998).
    Article CAS Google Scholar
  23. Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140– 146 (1998).
    Article CAS Google Scholar
  24. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–62 (1999).
    CAS Google Scholar
  25. Monyer, H., Seeburg, P. H. & Wisden, W. Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799–810 (1991).
    Article CAS Google Scholar
  26. Sato, K., Kiyama, H. & Tohyama, M. The differential expression patterns of messenger RNAs encoding non-N-methyl-D-aspartate glutamate receptor subunits (GluR1-4) in the rat brain. Neuroscience 52, 515– 539 (1993).
    Article CAS Google Scholar
  27. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174– 17179 (1990).
    CAS PubMed Google Scholar
  28. Doetzlhofer, A. et al. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol. Cell Biol. 19, 5504– 5511 (1999).
    Article CAS Google Scholar
  29. Zhang, W. & Bieker, J. J. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. USA 95, 9855–9860 (1998).
    Article CAS Google Scholar
  30. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).
    Article CAS Google Scholar
  31. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).
    Article CAS Google Scholar
  32. Van Lint, C., Emiliani, S. & Verdin, E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5, 245–253 ( 1996).
    CAS PubMed Google Scholar
  33. Cousens, L. S., Gallwitz, D. & Alberts, B. M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254, 1716– 1723 (1979).
    CAS PubMed Google Scholar
  34. Gray, S. G. & Ekstrom, T. J. Effects of cell density and trichostatin A on the expression of HDAC1 and p57Kip2 in Hep 3B cells. Biochem. Biophys. Res. Commun. 245, 423–427 (1998).
    Article CAS Google Scholar
  35. Tapia-Ramirez, J., Eggen, B. J., Peral-Rubio, M. J., Toledo-Aral, J. J. & Mandel, G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl. Acad. Sci. USA 94, 1177–1182 (1997).
    Article CAS Google Scholar
  36. Thiel, G., Lietz, M. & Cramer, M. Biological activity and modular structure of RE-1-silencing transcription factor (REST), a repressor of neuronal genes. J. Biol. Chem. 273, 26891–26899 (1998).
    Article CAS Google Scholar
  37. Leichter, M. & Thiel, G. Transcriptional repression by the zinc finger protein REST is mediated by titratable nuclear factors. Eur. J. Neurosci. 11, 1937–1946 (1999).
    Article CAS Google Scholar
  38. Andres, M. E. et al. CoREST: A functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. USA 96, 9873–9878 (1999).
    Article CAS Google Scholar
  39. Carmen, A. A., Rundlett, S. E. & Grunstein, M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271, 15837 –15844 (1996).
    Article CAS Google Scholar
  40. Emiliani, S., Fischle, W., Van Lint, C., Al-Abed, Y. & Verdin, E. Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl. Acad. Sci. USA 95, 2795–2800 (1998).
    Article CAS Google Scholar
  41. Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 96, 4868–4873 (1999).
    Article CAS Google Scholar
  42. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).
    Article CAS Google Scholar
  43. Hassig, C. A. et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95, 3519–3524 (1998).
    Article CAS Google Scholar
  44. Sowa, Y. et al. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem. Biophys. Res. Commun. 241, 142–150 (1997).
    Article CAS Google Scholar
  45. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re- expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).
    Article CAS Google Scholar
  46. Coffee, B., Zhang, F., Warren, S. T. & Reines, D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22, 98–101 ( 1999).
    Article CAS Google Scholar
  47. Prince, H. K., Conn, P. J., Blackstone, C. D., Huganir, R. L. & Levey, A. I. Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling. J. Neurochem 64, 462–465 (1995).
    Article CAS Google Scholar
  48. Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V., Cho, S. & Pulsinelli, W. A. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA 89, 10499–10503 (1992).
    Article CAS Google Scholar
  49. Friedman, L. K. et al. Kainate-induced status epilepticus alters glutamate and GABA A receptor gene expression in adult rat hippocampus: an in situ hybridization study. J. Neurosci. 14, 2697– 2707 (1994).
    Article CAS Google Scholar
  50. Pollard, H., Heron, A., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia. Neuroscience 57, 545–554 ( 1993).
    Article CAS Google Scholar

Download references