Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes (original) (raw)
References
Kraner, S. D., Chong, J. A., Tsay, H. J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron9, 37– 44 (1992). ArticleCAS Google Scholar
Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron9, 45–54 (1992). ArticleCAS Google Scholar
Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell80, 949–957 (1995). ArticleCAS Google Scholar
Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science267, 1360– 1363 (1995). ArticleCAS Google Scholar
Schoenherr, C. J., Paquette, A. J. & Anderson, D. J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl. Acad. Sci. USA93, 9881–9886 ( 1996). ArticleCAS Google Scholar
Myers, S. J. et al. Transcriptional regulation of the GluR2 gene: Neural-specific expression, multiple promoters, and regulatory elements. J. Neurosci.18, 6723–6739 ( 1998). ArticleCAS Google Scholar
Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat. Genet.20, 136–42 (1998). ArticleCAS Google Scholar
Timmusk, T., Palm, K., Lendahl, U. & Metsis, M. Brain-derived neurotrophic factor expression in vivo is under the control of neuron-restrictive silencer element. J. Biol. Chem.274, 1078– 1084 (1999). CASPubMed Google Scholar
Kallunki, P., Edelman, G. M. & Jones, F. S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl. Acad. Sci. USA95, 3233–3238 (1998). ArticleCAS Google Scholar
Palm, K., Belluardo, N., Metsis, M. & Timmusk, T. Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J. Neurosci.18, 1280– 1296 (1998). ArticleCAS Google Scholar
Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature387, 49– 55 (1997). ArticleCAS Google Scholar
Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell89, 341–347 ( 1997). ArticleCAS Google Scholar
Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell89, 349–356 (1997). ArticleCAS Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleCAS Google Scholar
Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell92, 463– 473 (1998). ArticleCAS Google Scholar
Nomura, T. et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by mad and thyroid hormone receptor. Genes Dev.13, 412–423 ( 1999). ArticleCAS Google Scholar
Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E. & Schreiber, S. L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature395, 917–921 ( 1998). ArticleCAS Google Scholar
Kadosh, D. & Struhl, K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell Biol.18, 5121 –5127 (1998). ArticleCAS Google Scholar
Ashraf, S. I. & Ip, Y. T. Transcriptional control: repression by local chromatin modification. Curr Biol.8, R683–686 (1998). ArticleCAS Google Scholar
Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev.12, 599–606 ( 1998). ArticleCAS Google Scholar
Utley, R. T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature394, 498 –502 (1998). ArticleCAS Google Scholar
Imhof, A. & Wolffe, A. P. Transcription: gene control by targeted histone acetylation. Curr. Biol.8, R422–424 (1998). ArticleCAS Google Scholar
Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev.8, 140– 146 (1998). ArticleCAS Google Scholar
Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev.51, 7–62 (1999). CAS Google Scholar
Monyer, H., Seeburg, P. H. & Wisden, W. Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron6, 799–810 (1991). ArticleCAS Google Scholar
Sato, K., Kiyama, H. & Tohyama, M. The differential expression patterns of messenger RNAs encoding non-N-methyl-D-aspartate glutamate receptor subunits (GluR1-4) in the rat brain. Neuroscience52, 515– 539 (1993). ArticleCAS Google Scholar
Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem.265, 17174– 17179 (1990). CASPubMed Google Scholar
Doetzlhofer, A. et al. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol. Cell Biol.19, 5504– 5511 (1999). ArticleCAS Google Scholar
Zhang, W. & Bieker, J. J. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. USA95, 9855–9860 (1998). ArticleCAS Google Scholar
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90, 595–606 (1997). ArticleCAS Google Scholar
Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature396, 594–598 (1998). ArticleCAS Google Scholar
Van Lint, C., Emiliani, S. & Verdin, E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr.5, 245–253 ( 1996). CASPubMed Google Scholar
Cousens, L. S., Gallwitz, D. & Alberts, B. M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem.254, 1716– 1723 (1979). CASPubMed Google Scholar
Gray, S. G. & Ekstrom, T. J. Effects of cell density and trichostatin A on the expression of HDAC1 and p57Kip2 in Hep 3B cells. Biochem. Biophys. Res. Commun.245, 423–427 (1998). ArticleCAS Google Scholar
Tapia-Ramirez, J., Eggen, B. J., Peral-Rubio, M. J., Toledo-Aral, J. J. & Mandel, G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl. Acad. Sci. USA94, 1177–1182 (1997). ArticleCAS Google Scholar
Thiel, G., Lietz, M. & Cramer, M. Biological activity and modular structure of RE-1-silencing transcription factor (REST), a repressor of neuronal genes. J. Biol. Chem.273, 26891–26899 (1998). ArticleCAS Google Scholar
Leichter, M. & Thiel, G. Transcriptional repression by the zinc finger protein REST is mediated by titratable nuclear factors. Eur. J. Neurosci.11, 1937–1946 (1999). ArticleCAS Google Scholar
Andres, M. E. et al. CoREST: A functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. USA96, 9873–9878 (1999). ArticleCAS Google Scholar
Carmen, A. A., Rundlett, S. E. & Grunstein, M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem.271, 15837 –15844 (1996). ArticleCAS Google Scholar
Emiliani, S., Fischle, W., Van Lint, C., Al-Abed, Y. & Verdin, E. Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl. Acad. Sci. USA95, 2795–2800 (1998). ArticleCAS Google Scholar
Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA96, 4868–4873 (1999). ArticleCAS Google Scholar
Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell95, 279–289 (1998). ArticleCAS Google Scholar
Hassig, C. A. et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA95, 3519–3524 (1998). ArticleCAS Google Scholar
Sowa, Y. et al. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem. Biophys. Res. Commun.241, 142–150 (1997). ArticleCAS Google Scholar
Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re- expression of genes silenced in cancer. Nat. Genet.21, 103–107 (1999). ArticleCAS Google Scholar
Coffee, B., Zhang, F., Warren, S. T. & Reines, D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet.22, 98–101 ( 1999). ArticleCAS Google Scholar
Prince, H. K., Conn, P. J., Blackstone, C. D., Huganir, R. L. & Levey, A. I. Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling. J. Neurochem64, 462–465 (1995). ArticleCAS Google Scholar
Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V., Cho, S. & Pulsinelli, W. A. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA89, 10499–10503 (1992). ArticleCAS Google Scholar
Friedman, L. K. et al. Kainate-induced status epilepticus alters glutamate and GABA A receptor gene expression in adult rat hippocampus: an in situ hybridization study. J. Neurosci.14, 2697– 2707 (1994). ArticleCAS Google Scholar
Pollard, H., Heron, A., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia. Neuroscience57, 545–554 ( 1993). ArticleCAS Google Scholar