Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots (original) (raw)

References

  1. Crutzen, P. J. in Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction (eds von Engelhardt, W., Leonhardt-Marek, S., Breves, G. & Giesecke, D.) 291–315 (Enke, Stuttgart, Germany).
  2. Neue, H. U. Fluxes of methane from rice fields and potential for mitigation. Soil Use Mgmt 13, 258–267 (1997).
    Article Google Scholar
  3. Cassman, K. G. et al. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 56, 7–39 (1998 ).
    Article Google Scholar
  4. Denier van der Gon, H. A. C. & Neue, H. U. Oxidation of methane in the rhizosphere of rice plants. Biol. Fertil. Soils 22, 359–366 (1996).
    Article CAS Google Scholar
  5. Bosse, U. & Frenzel, P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa ). Appl. Environ. Microbiol. 63, 1199 –1207 (1997).
    CAS PubMed PubMed Central Google Scholar
  6. Steudler, P. A., Bowden, R. D., Mellilo, J. M. & Aber J. D. Influence of nitrogen fertilization on methane uptake in temperate forest soil. Nature 341, 314–316 ( 1989).
    Article ADS Google Scholar
  7. King, G. M. & Schnell, S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370, 282–284 (1994).
    Article ADS CAS Google Scholar
  8. Gulledge, J., Doyle, A. P. & Schimel, J. P. Different NH+4-inhibition patterns of soil CH4 –oxidizer populations across sites. Soil Biol. Biochem. 29, 13– 21 (1997).
    Article CAS Google Scholar
  9. Bosse, U., Frenzel, P. & Conrad, R. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 13, 123–134 (1993).
    Article CAS Google Scholar
  10. Van der Nat, F. J. W. A., DeBrouwer,, J. F. C., Middelburg, J. J. & Laanbroek, H. J. Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Appl. Environ. Microbiol. 63, 4734–4740 (1997).
    CAS PubMed PubMed Central Google Scholar
  11. Roslev, P., Iversen, N. & Henriksen, K. Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis. J. Microbiol. Methods 31, 99– 111 (1998).
    Article CAS Google Scholar
  12. Henckel, T., Friedrich, M. & Conrad, R. Molecular analysis of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990 (1999).
    CAS PubMed PubMed Central Google Scholar
  13. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
    CAS PubMed PubMed Central Google Scholar
  14. King, G. M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl. Environ. Microbiol. 60, 3220– 3227 (1994).
    CAS PubMed PubMed Central Google Scholar
  15. Gilbert, B. & Frenzel, P. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 1903–1916.
  16. Sundh, I., Borgå, P., Nilsson, M. & Svensson,, B. H. Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phopholipid fatty acids. FEMS Microbiol. Ecol. 18, 103–112 ( 1995).
    Article CAS Google Scholar
  17. Bodelier, P. L. E., Hahn, A. P., Arth,, I. R & Frenzel,, P. Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry (submitted).
  18. Dunfield, P. F. & Knowles, R. Kinetics of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl. Environ. Microbiol. 61, 3129–3135 (1995).
    CAS PubMed PubMed Central Google Scholar
  19. King, G. M. & Schnell, S. Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and maine forest soil. Appl. Environ. Microbiol. 64 , 253–257 (1998).
    CAS PubMed PubMed Central Google Scholar
  20. Gulledge, J. & Schimel J. P. Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH+ 4 inhibition. Appl. Environ. Microbiol. 64, 4291–4298 (1998).
    CAS PubMed PubMed Central Google Scholar
  21. Lindau, C. W., Bollich, P. K., Delaune R. D., Patrick, W. H. Jr & Law, V. J. Effects of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field. Plant Soil 136, 195–203 (1991).
    Article CAS Google Scholar
  22. Banik, A., Sen, M. & Sen, S. P. Effects of inorganic fertilizers and micronutrients on methane production from wetland rice (Oryza sativa L.). Biol. Fertil. Soil 21, 319–322 ( 1996).
    Article CAS Google Scholar
  23. Bodelier, P. L. E., Wijlhuizen, A. G., Blom, C. W. P. M. & Laanbroek, H. J. Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil 190, 91 –103 (1997).
    Article CAS Google Scholar
  24. Bodelier, P. L. E. & Frenzel, P. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH+ 4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol. 65, 1826–1833 (1999).
    CAS PubMed PubMed Central Google Scholar
  25. Strunk, O. & Ludwig,, W. ARB: A Software Environment for Sequence Data (Technische Universität München, Munich, Germany, 1996); available at http://www.biol.chemie.tu-muenchen.de/pub/ARB.
  26. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).
    Article CAS PubMed Google Scholar
  27. Roslev, P. & Iversen, N. Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl. Environ. Microbiol. 65, 4064–4070 (1999).
    CAS PubMed PubMed Central Google Scholar

Download references