Genetics of body-weight regulation (original) (raw)
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Addison-Wesley, Harlow,1995 ). Google Scholar
Bouchard, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med.322, 1477–1482 (1990). ArticleCASPubMed Google Scholar
Stunkard, A. J. et al. An adoption study of human obesity. N. Engl. J. Med.314, 193–198 ( 1986). ArticleCASPubMed Google Scholar
Allison, D. B. et al. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int. J. Obes. Relat. Metab. Disord.20, 501–506 (1996). CASPubMed Google Scholar
Comuzzie, A. G. et al. Genetic and environmental correlations among hormone levels and measures of body fat accumulation and topography. J. Clin. Endocrinol. Metab.81, 597–600 (1996). CASPubMed Google Scholar
Price, R. A. & Gottesman, I. I. Body fat in identical twins reared apart: roles for genes and environment. Behav. Genet.21, 1–7 (1991). ArticleCASPubMed Google Scholar
Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet.27, 325–351 (1997). ArticleCASPubMed Google Scholar
Hill, J. O. & Peters, J. C. Environmental contributions to the obesity epidemic. Science280, 1371– 1374 (1998). ArticleADSCASPubMed Google Scholar
World Health Organization. Obesity: Preventing and Managing the Global Epidemic (World Health Organization, Geneva, 1998).
West, D. B., Waguespack, J. & McCollister, S. Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol.268, R658–R665 (1995). CASPubMed Google Scholar
Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet.11, 241–247 ( 1995). ArticleCASPubMed Google Scholar
Comuzzie, A. G. et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nature Genet.15, 273–276 ( 1997). ArticleCASPubMed Google Scholar
Hager, J. et al. A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nature Genet.20, 304–308 (1998). ArticleCASPubMed Google Scholar
Rotimi, C. N. et al. The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans. Diabetes48, 643–644 (1999). ArticleCASPubMed Google Scholar
Hixson, J. E. et al. Normal variation in leptin levels in associated with polymorphisms in the proopiomelanocortin gene, POMC. J. Clin. Endocrinol. Metab.84, 3187–3191 ( 1999). CASPubMed Google Scholar
Perusse, L., Chagnon, Y. C., Weisnagel, J. & Bouchard, C. The human obesity gene map: the 1998 update. Obes. Res.7, 111–129 (1999). ArticleCASPubMed Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). ArticleADSCASPubMed Google Scholar
Fisler, J. S. & Warden, C. H. Mapping of mouse obesity genes: a generic approach to a complex trait. J. Nutr.127 , 1909S–1916S (1997). ArticleCASPubMed Google Scholar
West, D. B. Genetics of obesity in humans and animal models. Endocrinol. Metab. Clin. North Am.25, 801–813 (1996). ArticleCASPubMed Google Scholar
Pomp, D. & Nielsen, M. K. Quantitative genetics of energy balance — lessons from animal models. Obes. Res.7, 106–110 (1999). ArticleCASPubMed Google Scholar
Brockmann, G. A., Haley, C. S., Renne, U., Knott, S. A. & Schwerin, M. Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics150, 369–381 (1998). CASPubMedPubMed Central Google Scholar
Moody, D. E., Pomp, D., Nielsen, M. K. & Van Vleck, L. D. Identification of quantitative trait loci influencing traits related to energy balance in selection and inbred lines of mice. Genetics152, 699–711 (1999). CASPubMedPubMed Central Google Scholar
Goodale, H. A study of the inheritance of body weight in the albino mouse by selection . J. Hered.29, 101–112 (1938). Article Google Scholar
MacArthur, J. Genetics of body size and related characters. I. Selection of small and large races of the laboratory mouse. Am. Nat.78, 142–157 (1944). Article Google Scholar
Cheverud, J. M. & Routman, E. J. Epistasis and its contribution to genetic variance components. Genetics139, 1455–1461 (1995). CASPubMedPubMed Central Google Scholar
West, D. B., Goudey-Lefevre, J., York, B. & Truett, G. E. Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J. Clin. Invest.94, 1410– 1416 (1994). ArticleCASPubMedPubMed Central Google Scholar
York, B. et al. Gene-environment interaction: a significant diet-dependent obesity locus demonstrated in a congenic segment on mouse chromosome 7. Mamm. Genome10, 457–462 (1999). ArticleCASPubMed Google Scholar
West, D. B., Waguespack, J., York, B., Goudey-Lefevre, J. & Price, R. A. Genetics of dietary obesity in AKR/J x SWR/J mice: segregation of the trait and identification of a linked locus on chromosome 4. Mamm. Genome5, 546– 552 (1994). ArticleCASPubMed Google Scholar
Chagnon, Y. C. & Bouchard, C. Genetics of obesity: advances from rodent studies. Trends Genet.12, 441–444 (1996). ArticleCASPubMed Google Scholar
Leibel, R. L., Chung, W. K. & Chua, S. C. Jr The molecular genetics of rodent single gene obesities. J. Biol. Chem.272, 31937–31940 (1997). ArticleCASPubMed Google Scholar
Coleman, D. L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia9, 294–298 (1973). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue . Nature372, 425–432 (1994). ArticleADSCASPubMed Google Scholar
Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature395, 763–770 (1998). ArticleADSCASPubMed Google Scholar
Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature382, 250–252 ( 1996). ArticleADSCASPubMed Google Scholar
Woods, S. C., Seeley, R. J., Porte, D. Jr & Schwartz, M. W. Signals that regulate food intake and energy homeostasis. Science280, 1378–1383 ( 1998). ArticleADSCASPubMed Google Scholar
Ahima, R. S., Kelly, J., Elmquist, J. K. & Flier, J. S. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia . Endocrinology140, 4923– 4931 (1999). ArticleCASPubMed Google Scholar
Michaud, E. J. et al. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc. Natl Acad. Sci. USA91, 2562–2566 ( 1994). ArticleADSCASPubMedPubMed Central Google Scholar
Rossi, M. et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo . Endocrinology139, 4428– 4431 (1998). ArticleCASPubMed Google Scholar
Wilson, B. D., Ollmann, M. M. & Barsh, G. S. The role of agouti-related protein in regulating body weight. Mol. Med. Today5, 250– 256 (1999). ArticleCASPubMed Google Scholar
Shutter, J. R. et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev.11, 593–602 (1997). ArticleCASPubMed Google Scholar
Graham, M., Shutter, J. R., Sarmiento, U., Sarosi, I. & Stark, K. L. Overexpression of Agrt leads to obesity in transgenic mice. Nature Genet.17, 273–274 (1997). ArticleCASPubMed Google Scholar
Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science278, 135–138 (1997). ArticleCASPubMed Google Scholar
Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell88, 131– 141 (1997). ArticleCASPubMed Google Scholar
Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron22, 221– 232 (1999). ArticleCASPubMed Google Scholar
Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron23, 775–786 (1999). ArticleCASPubMed Google Scholar
Mizuno, T. M. & Mobbs, C. V. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting . Endocrinology140, 814– 817 (1999). ArticleCASPubMed Google Scholar
Broberger, C., Johansen, J., Johansson, C., Schalling, M. & Hokfelt, T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA95, 15043 –15048 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Elmquist, J. K., Maratos-Flier, E., Saper, C. B. & Flier, J. S. Unraveling the central nervous system pathways underlying responses to leptin . Nature Neurosci.1, 445– 450 (1998). ArticleCASPubMed Google Scholar
Cheung, C. C., Clifton, D. K. & Steiner, R. A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology138, 4489–4492 (1997). ArticleCASPubMed Google Scholar
Marsh, D. J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genet.21, 119–122 (1999). ArticleCASPubMed Google Scholar
Boston, B., Blaydon, K., Varnerin, J. & Cone, R. Independent and additive effects of central POMC and leptin pathways on murine obesity . Science278, 1641–1644 (1997). ArticleADSCASPubMed Google Scholar
Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med.5, 1066–1070 (1999). ArticleCASPubMed Google Scholar
Tecott, L. H. et al. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature374, 542– 546 (1995). ArticleADSCASPubMed Google Scholar
Hahm, S. et al. Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron23, 537– 548 (1999). ArticleCASPubMed Google Scholar
Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos- Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature396, 670–674 (1998). ArticleADSCASPubMed Google Scholar
Kolehmainen, J. et al. Refined mapping of the Cohen syndrome gene by linkage disequilibrium . Eur. J. Hum. Genet.5, 206– 213 (1997). CASPubMed Google Scholar
Russell-Eggitt, I. M. et al. Alstrom syndrome. Report of 22 cases and literature review . Ophthalmology105, 1274– 1280 (1998). ArticleCASPubMed Google Scholar
Beales, P. L., Warner, A. M., Hitman, G. A., Thakker, R. & Flinter, F. A. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J. Med. Genet.34, 92–98 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bruford, E. A. et al. Linkage mapping in 29 Bardet-Biedl syndrome families confirms loci in chromosomal regions 11q13, 15q22.3-q23, and 16q21. Genomics41, 93–99 ( 1997). ArticleCASPubMed Google Scholar
Mathews, K. D. et al. Linkage localization of Borjeson-Forssman-Lehmann syndrome . Am. J. Med. Genet.34, 470– 474 (1989). ArticleCASPubMed Google Scholar
Gunay-Aygun, M., Cassidy, S. B. & Nicholls, R. D. Prader-Willi and other syndromes associated with obesity and mental retardation. Behav. Genet.27, 307–324 (1997). ArticleCASPubMed Google Scholar
Strobel, A., Issad, T., Camoin, L., Ozata, M. & Strosberg, A. D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nature Genet.18, 213 –215 (1998). ArticleCASPubMed Google Scholar
Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature387, 903– 908 (1997). ArticleADSCASPubMed Google Scholar
Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature392, 398 –401 (1998). ArticleADSCASPubMed Google Scholar
Bray, G. A. & York, D. A. Genetically transmitted obesity in rodents. Physiol. Rev.51, 598– 646 (1971). ArticleCASPubMed Google Scholar
Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet.19, 155–157 ( 1998). ArticleADSCASPubMed Google Scholar
Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature Genet.20, 111– 112 (1998). ArticleCASPubMed Google Scholar
Hinney, A. et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab.84, 1483–1486 (1999). ArticleCASPubMed Google Scholar
Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genet.20, 113– 114 (1998). ArticleCASPubMed Google Scholar
Gu, W. et al. Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes48, 635– 639 (1999). ArticleCASPubMed Google Scholar
Ho, G. & MacKenzie, R. G. Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J. Biol. Chem.274, 35816–35822 (1999). ArticleCASPubMed Google Scholar
Sina, M. et al. Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene . Am. J. Hum. Genet.65, 1501– 1507 (1999). ArticleCASPubMedPubMed Central Google Scholar
Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341, 879–884 (1999). ArticleCASPubMed Google Scholar
Naggert, J. K. et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genet.10, 135–142 ( 1995). ArticleCASPubMed Google Scholar
Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet.16, 303–306 ( 1997). ArticleCASPubMed Google Scholar
Spielman, R. S. & Ewens, W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet.59, 983–989 (1996). CASPubMedPubMed Central Google Scholar
Odunsi, K. & Kidd, K. K. A paradigm for finding genes for a complex human trait: polycystic ovary syndrome and follistatin. Proc. Natl Acad. Sci. USA96, 8315– 8317 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Lowell, B. B. & Flier, J. S. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu. Rev. Med.48, 307–316 (1997). ArticleCASPubMed Google Scholar
Pietri-Rouxel, F., St John Manning, B., Gros, J. & Strosberg, A. D. The biochemical effect of the naturally occurring Trp64→Arg mutation on human beta3-adrenoceptor activity. Eur. J. Biochem.247, 1174–1179 (1997). ArticleCASPubMed Google Scholar
Li, L. S., Lonnqvist, F., Luthman, H. & Arner, P. Phenotypic characterization of the Trp64Arg polymorphism in the beta3-adrenergic receptor gene in normal weight and obese subjects. Diabetologia39, 857–860 ( 1996). ArticleCASPubMed Google Scholar
Allison, D. B., Heo, M., Faith, M. S. & Pietrobelli, A. Meta-analysis of the association of the Trp64Arg polymorphism in the beta3 adrenergic receptor with body mass index. Int. J. Obes. Relat. Metab. Disord.22, 559–566 (1998). ArticleCASPubMed Google Scholar
Fujisawa, T., Ikegami, H., Kawaguchi, Y. & Ogihara, T. Meta-analysis of the association of Trp64Arg polymorphism of beta3-adrenergic receptor gene with body mass index. J. Clin. Endocrinol. Metab.83, 2441–2444 ( 1998). CASPubMed Google Scholar
Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature385, 165–168 (1997). ArticleADSCASPubMed Google Scholar
Urbanek, M. et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc. Natl Acad. Sci. USA96, 8573–8578 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet.22, 139– 144 (1999). ArticleCASPubMed Google Scholar
Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res.9, 720– 731 (1999). CASPubMedPubMed Central Google Scholar
Allison, D. B. et al. Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am. J. Hum. Genet.65, 531–544 (1999). ArticleCASPubMedPubMed Central Google Scholar
Allison, D. B. & Schork, N. J. Selected methodological issues in meiotic mapping of obesity genes in humans: issues of power and efficiency. Behav. Genet.27, 401– 421 (1997). ArticleCASPubMed Google Scholar
Marth, G. T. et al. A general approach to single-nucleotide polymorphism discovery . Nature Genet.23, 452– 456 (1999). ArticleCASPubMed Google Scholar
Hrabe de Angelis, M. & Balling, R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat. Res.400, 25–32 (1998). ArticleCASPubMed Google Scholar
Brown, S. D. & Nolan, P. M. Mouse mutagenesis-systematic studies of mammalian gene function. Hum. Mol. Genet.7, 1627–1633 (1998). ArticleCASPubMed Google Scholar
Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature392, 608– 611 (1998). ArticleADSCASPubMed Google Scholar
Brennan, J. & Skarnes, W. C. Gene trapping in mouse embryonic stem cells. Methods Mol. Biol.97, 123– 138 (1999). CASPubMed Google Scholar
Miller, K. A. et al. Genetic studies of the mouse mutations mahogany and mahoganoid . Genetics146, 1407–1415 (1997). CASPubMedPubMed Central Google Scholar
Gunn, T. M. et al. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature398, 152– 156 (1999). ArticleADSCASPubMed Google Scholar
Norman, R. A. et al. Genomewide search for genes influencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22. Pima Diabetes Gene Group. Am. J. Hum. Genet.60, 166– 173 (1997). CASPubMedPubMed Central Google Scholar
Hanson, R. L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet.63, 1130–1138 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Collins, A. C., Martin, I. C. & Kirkpatrick, B. W. Growth quantitative trait loci (QTL) on mouse chromosome 10 in a Quackenbush-Swiss x C57BL/6J backcross. Mamm. Genome4, 454–458 (1993). ArticleCASPubMed Google Scholar
Warden, C. H. et al. Identification of four chromosomal loci determining obesity in a multifactorial mouse model. J. Clin. Invest.95 , 1545–1552 (1995). ArticleCASPubMedPubMed Central Google Scholar
Dragani, T. A. et al. Mapping of body weight loci on mouse chromosome X. Mamm. Genome6, 778–781 (1995). ArticleCASPubMed Google Scholar
Taylor, B. A. & Phillips, S. J. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics34, 389–398 ( 1996). ArticleCASPubMed Google Scholar
York, B., Lei, K. & West, D. B. Sensitivity to dietary obesity linked to a locus on chromosome 15 in a CAST/Ei x C57BL/6J F2 intercross. Mamm. Genome7, 677–681 (1996). ArticleCASPubMed Google Scholar
Keightley, P. D., Hardge, T., May, L. & Bulfield, G. A genetic map of quantitative trait loci for body weight in the mouse. Genetics142, 227–235 ( 1996). CASPubMedPubMed Central Google Scholar
Taylor, B. A. & Phillips, S. J. Obesity QTLs on mouse chromosomes 2 and 17. Genomics43, 249–257 (1997). ArticleCASPubMed Google Scholar
Lembertas, A. V. et al. Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J. Clin. Invest.100, 1240–1247 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mehrabian, M., Wen, P. Z., Fisler, J., Davis, R. C. & Lusis, A. J. Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J. Clin. Invest.101, 2485–2496 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Suto, J., Matsuura, S., Imamura, K., Yamanaka, H. & Sekikawa, K. Genetics of obesity in KK mouse and effects of A(y) allele on quantitative regulation. Mamm. Genome9, 506–510 ( 1998). ArticleCASPubMed Google Scholar
Taylor, B. A., Tarantino, L. M. & Phillips, S. J. Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm. Genome10, 963–968 ( 1999). ArticleCASPubMed Google Scholar
Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell83, 1263–1271 (1995). ArticleCASPubMed Google Scholar
Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell84, 491–495 ( 1996). ArticleCASPubMed Google Scholar
Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice . Nature379, 632–635 (1996). ArticleADSCASPubMed Google Scholar
Miller, M. W. et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the Lethal-Yellow mutation. Genes Dev.7, 454–467 ( 1993). ArticleCASPubMed Google Scholar
Bultman, S. J., Michaud, E. J. & Woychik, R. P. Molecular characterization of the mouse agouti locus . Cell71, 1195–1204 (1992). ArticleCASPubMed Google Scholar
Good, D. J. et al. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nature Genet.15, 397 –401 (1997). ArticleCASPubMed Google Scholar
Boggon, T. J., Shan, W. S., Santagata, S., Myers, S. C. & Shapiro, L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science286, 2119–2125 ( 1999). ArticleCASPubMed Google Scholar
Noben-Trauth, K., Naggert, J. K., North, M. A. & Nishina, P. M. A candidate gene for the mouse mutation tubby. Nature380, 534–538 (1996). ArticleADSCASPubMed Google Scholar