State-dependent cross-inhibition between transmitter-gated cation channels (original) (raw)

References

  1. Green, T., Heinemann, S. F. & Gusella, J. F. Molecular neurobiology and genetics: investigation of neural function and dysfunction. Neuron 20, 427–444 (1998).
    Article CAS Google Scholar
  2. Rogers, M., Colquhoun, L. M., Patrick, J. W. & Dani, J. A. Calcium flux through predominantly independent purinergic ATP and nicotinic acetylcholine receptors. J. Neurophysiol. 77, 1407–1417 (1997).
    Article CAS Google Scholar
  3. Fieber, L. A. & Adams, D. J. Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J. Physiol. (Lond.) 434, 239– 256 (1991).
    Article CAS Google Scholar
  4. Fieber, L. A. & Adams, D. J. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J. Physiol. (Lond.) 434, 215–237 (1991).
    Article CAS Google Scholar
  5. Nakazawa, K. ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons. J. Neurosci. 14, 740–750 (1994).
    Article CAS Google Scholar
  6. Searl, T. J., Redman, R. S. & Silinsky, E. M. Mutual occlusion of P2X ATP receptors and nicotinic receptors on sympathetic neurons of the guinea-pig. J. Physiol. (Lond.) 510, 783–791 ( 1998).
    Article CAS Google Scholar
  7. Zhou, X. & Galligan, J. J. Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J. Physiol. (Lond.) 513, 685 –697 (1998).
    Article CAS Google Scholar
  8. Barajas-Lopez, C., Espinosa-Luna, R. & Zhu, Y. Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J. Physiol. (Lond.) 513, 671–683 ( 1998).
    Article CAS Google Scholar
  9. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).
    Article CAS Google Scholar
  10. Zhou, X. & Galligan, J. J. P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J. Physiol. (Lond.) 496, 719–729 ( 1996).
    Article CAS Google Scholar
  11. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).
    Article ADS CAS Google Scholar
  12. Xu, W. et al. Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 96, 5746–5751 ( 1999).
    Article ADS CAS Google Scholar
  13. Xu, W. et al. Multiorgan autonomic dysfunction in mice lacking the β2 and β4 subunits of neuronal acetylcholine receptors. J. Neurosci. 19, 9298–9305 (1999).
    Article CAS Google Scholar
  14. Labarca, C. et al. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376, 514–516 (1995).
    Article ADS CAS Google Scholar
  15. Evans, R. J. et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. (Lond.) 497, 413–422 (1996).
    Article CAS Google Scholar
  16. Figl, A., Labarca, C., Davidson, N., Lester, H. A. & Cohen, B. N. Voltage-jump relaxation kinetics for wild-type and chimeric beta subunits of neuronal nicotinic receptors. J. Gen. Physiol. 107, 369– 379 (1996).
    Article CAS Google Scholar
  17. Khakh, B., Bao, X., Labarca, C. & Lester, H. Neuronal P2X receptor-transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci. 2, 322–330 ( 1999).
    Article CAS Google Scholar
  18. Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nature Neurosci. 2, 315 –321 (1999).
    Article CAS Google Scholar
  19. Taleb, O. & Betz, H. Expression of the human glycine receptor alpha 1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor density. EMBO J. 13, 1318–1324 (1994).
    Article CAS Google Scholar
  20. Honore, E. et al. Different types of K+ channel current are generated by different levels of a single mRNA. EMBO J 11, 2465 –2471 (1992).
    Article CAS Google Scholar
  21. Duke, T. A. & Bray, D. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl Acad. Sci. USA 96 , 10104–10108 (1999).
    Article ADS CAS Google Scholar
  22. Boue-Grabot, E., Archambault, V. & Seguela, P. A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J. Biol. Chem. 275, 10190–10195 (2000).
    Article CAS Google Scholar
  23. Lutz, P. L. & Kabler, S. Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anoxia. Brain Res. 769, 281– 286 (1997).
    Article CAS Google Scholar
  24. Bueno, L. & Fioramonti, J. Can. J. Gastroenterol. 13, 42A–46A (1999).
    Article Google Scholar
  25. Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765 –786 (1999).
    Article CAS Google Scholar
  26. Liu, F. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403, 274–280 (2000).
    Article ADS CAS Google Scholar
  27. North, R. A. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474–483 (1996).

Download references