Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds (original) (raw)

References

  1. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581, (1972).
    CAS PubMed Google Scholar
  2. Evans, R. J., Derkach, V. & Surprenant, A. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503– 505 (1992).
    Article CAS Google Scholar
  3. Edwards, F. A., Gibb, A. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144– 146 (1992).
    Article CAS Google Scholar
  4. Galligan, J. J. & Bertrand, P. P. ATP mediates fast synaptic potentials in enteric neurons. J. Neurosci. 14, 7563–7571 (1994).
    Article CAS Google Scholar
  5. Bardoni, R., Goldstein, P. A., Lee, J., Gu, J. G. & MacDermott, A. B. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J. Neurosci. 17, 5297–5304 (1997).
    Article CAS Google Scholar
  6. Nieber, K., Poelchen, W. & Illes, P. Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurons of the rat. Br. J. Pharmacol. 122, 423–430 (1997).
    Article CAS Google Scholar
  7. Surprenant, A., Buell, G. & North, R. A. P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci. 18, 224– 229 (1995).
    Article CAS Google Scholar
  8. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neurone synapses. Nature 389, 749–753 (1997).
    Article CAS Google Scholar
  9. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 (1998).
    Article CAS Google Scholar
  10. Wieraszko, A., Goldsmith, G. & Seyfried, T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 485, 244–250 (1989).
    Article CAS Google Scholar
  11. Cunha, R. A., Vizi, E. S., Ribeiro, J. A. & Sebastiao, A. M. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J. Neurochem. 67, 2180– 2187 (1996).
    Article CAS Google Scholar
  12. Terrian, D. M., Hernandez, P. G., Rea, M. A. & Peters, R. I. ATP release, adenosine formation, and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J. Neurochem. 53, 1390– 1399 (1989).
    Article CAS Google Scholar
  13. Lutz, P. L. & Kabler, S. Release of adenosine and ATP in the brain of freshwater turtle (Trachemys scripta) during long term anoxia. Brain Res. 769, 281–286 (1997).
    Article CAS Google Scholar
  14. Braun, N., Zhu, Y., Krieglstein, J., Culmsee, C. & Zimmermann, H. Upregulation of the enzyme chain hydrolysing extracellular ATP after transient forebrain ischaemia in the rat. J. Neurosci. 18, 4891–4900 (1998).
    Article CAS Google Scholar
  15. North, R. A. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474–483 (1996).
    Article CAS Google Scholar
  16. Green, T., Heinemann, S. F. & Gusella, J. F. Molecular neurobiology and genetics: investigation of neural function and dysfunction. Neuron 20, 427–444 (1998).
    Article CAS Google Scholar
  17. Kidd, E. J. et al. Localisation of P2X purinoceptor transcripts in the rat nervous system. Mol. Pharmacol. 48, 569– 573 (1995).
    CAS PubMed Google Scholar
  18. Vulchanova, L. et al. Differential distribution of 2 ATP-gated ion channels (P-2X receptors) determined by immunocytochemistry. Proc. Natl. Acad. Sci. USA 93, 8063–8067 (1996).
    Article CAS Google Scholar
  19. Vulchanova, L. et al. Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36, 1229–1242 (1997).
    Article CAS Google Scholar
  20. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).
    Article CAS Google Scholar
  21. Le, K. T. et al. Sensory presynaptic and widespread somatodendritic immunolocalisation of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190 (1998).
    Article CAS Google Scholar
  22. Buell, G., Lewis, C., Collo, G., North, R. A. & Surprenant, A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 15, 55– 62 (1996).
    Article CAS Google Scholar
  23. Seguela, P., Haghighi, A., Soghomonian, J. J. & Cooper, E. A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J. Neurosci. 16, 448– 455 (1996).
    Article CAS Google Scholar
  24. Soto, F. et al. P2X4: An ATP-activated ionotropic receptor cloned from rat brain. Proc. Natl. Acad. Sci. USA 93, 3684– 3688 (1996).
    Article CAS Google Scholar
  25. Le, K. T., Babinski, K. & Séguéla, P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J. Neurosci. 18, 7152–7159 (1998).
    Article CAS Google Scholar
  26. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1992).
    Google Scholar
  27. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).
    Article CAS Google Scholar
  28. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).
    Article CAS Google Scholar
  29. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995).
    Article CAS Google Scholar
  30. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995).
    Article CAS Google Scholar
  31. Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997).
    Article CAS Google Scholar
  32. Nicholson, C., ten Bruggencate, G., Stockle, H. & Steinberg, R. Ca2+ and potassium changes in extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41, 1026–1039 (1978).
    Article CAS Google Scholar
  33. Krnjevic, K., Morris, M. E. & Reiffenstein, R. J. Changes in extracellular Ca2+ and K+ activity accompanying hippocampal discharges. Can. J. Physiol. Pharmacol. 58, 579– 582 (1980).
    Article CAS Google Scholar
  34. Krnjevic, K., Morris, M. E. & Reiffenstein, R. J. Stimulation-evoked changes in extracellular K+ and Ca2+ in pyramidal layers of the rat's hippocampus. Can. J. Physiol. Pharmacol. 60, 1643– 1657 (1982).
    Article CAS Google Scholar
  35. Krnjevic, K., Morris, M. E., Reiffenstein, R. J. & Ropert, N. Depth distribution and mechanism of changes in extracellular K+ and Ca2+ concentrations in the hippocampus. Can. J. Physiol. Pharmacol. 60, 1658–1671 (1982).
    Article CAS Google Scholar
  36. Pumain, R. & Heinemann, U. Stimulus- and amino acid-induced Ca2+ and potassium changes in rat neocortex. J. Neurophysiol. 53, 1–16 (1985).
    Article CAS Google Scholar
  37. Morris, M. E. & Trippenbach, T. Changes in extracellular [K+] and [Ca2+] induced by anoxia in neonatal rabbit medulla. Am. J. Physiol. 264, R761– 769 (1993).
    Article CAS Google Scholar
  38. Evans, R. J. et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. (Lond.) 497, 413–422 (1996).
    Article CAS Google Scholar
  39. Torres, G. E., Egan, T. M. & Voigt, M. M. Topological analysis of the ATP-gated ionotropic P2X2 receptor subunit. FEBS Lett. 425, 19–23 (1998).
    Article CAS Google Scholar
  40. Newbolt, A. et al. Membrane topology of an ATP-gated ion channel (P2X receptor). J. Biol. Chem. 273, 15177– 15182 (1998).
    Article CAS Google Scholar
  41. Rassendren, F., Buell, G., Newbolt, A., North, R. A. & Surprenant, A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997).
    Article CAS Google Scholar
  42. Egan, T. M., Haines, W. R. & Voigt, M. M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350– 2359 (1998).
    Article CAS Google Scholar
  43. Collo, G. et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277–1283 (1997).
    Article CAS Google Scholar
  44. MacKinnon, R. Pore loops: an emerging theme in ion channel structure. Neuron 14, 889–892 (1995).
    Article CAS Google Scholar
  45. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).
    Article CAS Google Scholar
  46. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglia. J. Biol. Chem. 272, 29778–29783 (1997).
    Article CAS Google Scholar
  47. Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550 (1997).
    Article CAS Google Scholar
  48. Lester, H. A. The permeation pathway of neurotransmitter-gated ion channels. Annu. Rev. Biophys. Biomol. Struct. 21, 267– 292 (1992).
    Article CAS Google Scholar
  49. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
    Article CAS Google Scholar
  50. Quick, M. W. & Lester, H. A. in Ion Channels of Excitable Cells (ed. Narahashi, T) 261–279 (Academic, San Diego, 1994).
    Book Google Scholar

Download references