DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila (original) (raw)

References

  1. Horvitz, H. R. & Herskowitz, I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255 ( 1992).
    Article CAS PubMed Google Scholar
  2. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).
    Article CAS PubMed Google Scholar
  3. Knoblich, J. A. Mechanisms of asymmetric cell division during animal development. Curr. Opin. Cell Biol. 9, 833–841 (1997).
    Article CAS PubMed Google Scholar
  4. Lu, B., Jan, L. & Jan, Y. N. Control of cell divisions in the nervous system: symmetry and asymmetry. Annu. Rev. Neurosci. 23, 531–556 (2000).
    Article CAS PubMed Google Scholar
  5. Lin, H. & Schagat, T. Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet. 13, 33–39 (1997).
    Article CAS PubMed Google Scholar
  6. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells . Cell 76, 477–491 (1994).
    Article CAS PubMed Google Scholar
  7. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624– 627 (1995).
    Article CAS PubMed Google Scholar
  8. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).
    Article CAS PubMed Google Scholar
  9. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).
    Article CAS PubMed Google Scholar
  10. Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 ( 2000).
    Article CAS PubMed Google Scholar
  11. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399– 409 (2000).
    Article CAS PubMed Google Scholar
  12. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing inscuteable and the gα-binding protein pins orients asymmetric cell divisions in drosophila. Curr. Biol. 10, 353– 362 (2000).
    Article CAS PubMed Google Scholar
  13. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. (Online) 20, RC84 (2000).
    Article CAS Google Scholar
  14. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).
    Article CAS PubMed Google Scholar
  15. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544– 547 (1999).
    Article CAS PubMed Google Scholar
  16. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402 , 548–551 (1999).
    Article CAS PubMed Google Scholar
  17. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).
    Article CAS PubMed Google Scholar
  18. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311– 320 (1988).
    Article CAS PubMed Google Scholar
  19. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3 . Development 122, 3133– 3140 (1996).
    CAS PubMed Google Scholar
  20. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 ( 1998).
    CAS PubMed Google Scholar
  21. Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 ( 1996).
    Article CAS PubMed Google Scholar
  22. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075 –3084 (1996).
    CAS PubMed Google Scholar
  23. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).
    Article CAS PubMed Google Scholar
  24. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127 –135 (1999).
    CAS PubMed Google Scholar
  25. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743– 752 (1995).
    Article CAS PubMed Google Scholar
  26. Muller, H. A. Genetic control of epithelial cell polarity: lessons from Drosophila. Dev. Dyn. 218, 52–67 ( 2000).
    Article CAS PubMed Google Scholar
  27. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS PubMed Google Scholar
  28. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).
    Article CAS PubMed Google Scholar
  29. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).
    Article CAS PubMed Google Scholar
  30. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).
    Article CAS PubMed Google Scholar
  31. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  32. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases; Cdc42 and Rac1. J. Cell Sci. 113, 3267– 3275 (2000).
    CAS PubMed Google Scholar
  33. Jantsch-Plunger, V. et al. CYK-4. A rho family gtpase activating protein (gap) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  34. Eaton, S., Auvinen, P., Luo, L., Jan, Y. N. & Simons, K. CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell Biol. 131, 151–164 ( 1995).
    Article CAS PubMed Google Scholar
  35. Genova, J. L., Jong, S., Camp, J. T. & Fehon, R. G. Functional analysis of Cdc42 in actin filament assembly, epithelial morphogenesis, and cell signaling during Drosophila development. Dev. Biol. 221, 181–194 ( 2000).
    Article CAS PubMed Google Scholar
  36. Riggleman, B., Schedl, P. & Wieschaus, E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 63, 549– 560 (1990).
    Article CAS PubMed Google Scholar
  37. Dubreuil, R., Byers, T. J., Branton, D., Goldstein, L. S. & Kiehart, D. P. Drosophilia spectrin. I. Characterization of the purified protein. J. Cell Biol. 105, 2095–2102 ( 1987).
    Article CAS PubMed Google Scholar
  38. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback . Chromosoma 98, 81–85 (1989).
    Article CAS PubMed Google Scholar
  39. Chou, T. B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653 ( 1992).
    CAS PubMed PubMed Central Google Scholar

Download references