A real-time view of life within 100 nm of the plasma membrane (original) (raw)

References

  1. Kurzchalia, T. V. & Parton, R. G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424?431 (1999).
    Article CAS Google Scholar
  2. Simons, K. & Toomre, D. Lipid rafts and signal transduction . Nature Rev. Mol. Cell Biol. 1, 31? 39 (2000).
    CAS Google Scholar
  3. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509?544 (1998).
    Article CAS Google Scholar
  4. Thompson, N. L. & Lagerholm, C. B. Total internal reflection fluorescence: applications in cellular biophysics. Curr. Opin. Biotechnol. 8, 58?64 (1997).
    Article CAS Google Scholar
  5. Burmeister, J. S., Olivier, L. A., Reichert, W. M. & Truskey, G. A. Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. Biomaterials 19, 307?325 (1998).
    Article CAS Google Scholar
  6. Forkey, J. N., Quinlan, M. E. & Goldman, Y. E. Protein structural dynamics by single-molecule fluorescence polarization. Prog. Biophys. Mol. Biol. 74, 1?35 (2000).
    Article CAS Google Scholar
  7. Ambrose, W. P., Goodwin, P. M. & Nolan, J. P. Single-molecule detection with total internal reflection excitation: comparing signal-to-background and total signals in different geometries. Cytometry 36, 224? 231 (1999).
    Article CAS Google Scholar
  8. Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis . Annu. Rev. Biochem. 68, 863? 911 (1999).
    Article CAS Google Scholar
  9. Henkel, A. W. & Almers, W. Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr. Opin. Neurobiol. 6, 350?357 ( 1996).
    Article CAS Google Scholar
  10. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389?399 (1998).
    Article CAS Google Scholar
  11. Lang, T. et al. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18, 857?863 ( 1997); erratum in 19, 463 (1997 ).
    Article CAS Google Scholar
  12. Burke, N. V. et al. Neuronal peptide release is limited by secretory granule mobility . Neuron 19, 1095?1102 (1997).
    Article CAS Google Scholar
  13. Breckenridge, L. J. & Almers, W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl Acad. Sci. USA 84, 1945?1949 (1987).
    Article CAS Google Scholar
  14. Whalley, T., Terasaki, M., Cho, M. S. & Vogel, S. S. Direct membrane retrieval into large vesicles after exocytosis in sea urchin eggs. J. Cell Biol. 131, 1183?1192 (1995).
    Article CAS Google Scholar
  15. Steyer, J. A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474?478 (1997).
    Article CAS Google Scholar
  16. Thomas, P., Wong, J. G., Lee, A. K. & Almers, W. A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93?104 (1993).
    Article CAS Google Scholar
  17. Heinemann, C., Chow, R. H., Neher, E. & Zucker, R. S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J. 67, 2546?2557 (1994).
    Article CAS Google Scholar
  18. Oheim, M., Loerke, D., Stuhmer, W. & Chow, R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur. Biophys. J. 27, 83?98 (1998).
    Article CAS Google Scholar
  19. Oheim, M. & Stuhmer, W. Tracking chromaffin granules on their way through the actin cortex. Eur. Biophys. J. 29, 67?89 (2000).
    Article CAS Google Scholar
  20. Tsuboi, T., Zhao, C., Terakawa, S. & Rutter, G. A. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr. Biol. 10, 1307? 1310 (2000).Describes simultaneous evanescent field fluorescence imaging with two colours.
    Article CAS Google Scholar
  21. Albillos, A. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509? 512 (1997).
    Article CAS Google Scholar
  22. Ales, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nature Cell Biol. 1, 40?44 (1999).
    Article CAS Google Scholar
  23. Wacker, I. et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J. Cell Sci. 110, 1453?1463 ( 1997).
    CAS Google Scholar
  24. Lochner, J. E. et al. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol. Biol. Cell 9, 2463?2476 (1998).
    Article CAS Google Scholar
  25. Angleson, J. K., Cochilla, A. J., Kilic, G., Nussinovitch, I. & Betz, W. J. Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events. Nature Neurosci. 2, 440?446. (1999).
    Article CAS Google Scholar
  26. Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S. M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23?32 (2000).
    Article CAS Google Scholar
  27. Toomre, D., Steyer, J. A., Keller, P., Almers, W. & Simons, K. Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy. J. Cell Biol. 149, 33?40 (2000).References 26 and 27 image for the first time the exocytosis of constitutive secretory vesicles.
    Article CAS Google Scholar
  28. Fernandez, J. M., Neher, E. & Gomperts, B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312, 453?455 (1984).
    Article CAS Google Scholar
  29. Spruce, A. E., Breckenridge, L. J., Lee, A. K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643? 654 (1990).
    Article CAS Google Scholar
  30. von Gersdorff, H. & Matthews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735?739 ( 1994).
    Article CAS Google Scholar
  31. Ryan, T. A., Reuter, H. & Smith, S. J. Optical detection of a quantal presynaptic membrane turnover. Nature 388, 478? 482 (1997).
    Article CAS Google Scholar
  32. Betz, W. J. & Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200?203 (1992).
    Article CAS Google Scholar
  33. Zenisek, D., Steyer, J. A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849 ?854 (2000).Describes results from imaging synaptic vesicles in a mature presynaptic terminal.
    Article CAS Google Scholar
  34. Raviola, E. & Gilula, N. B. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J. Cell Biol. 65, 192?222 (1975).
    Article CAS Google Scholar
  35. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution . Nature 395, 347?353 (1998).
    Article CAS Google Scholar
  36. Han, W., Ng, Y. K., Axelrod, D. & Levitan, E. S. Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles . Proc. Natl Acad. Sci. USA 96, 14577? 14582 (1999).
    Article CAS Google Scholar
  37. Lang, T. et al. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J. 78, 2863?2877 (2000).
    Article CAS Google Scholar
  38. Steyer, J. A. & Almers, W. in Imaging Neurons: A Laboratory Manual (eds Yuste, R., Lanni, F. & Konnerth, A.) 54. 1?54.8 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).
    Google Scholar
  39. Muallem, S., Kwiatkowska, K., Xu, X. & Yin, H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells . J. Cell Biol. 128, 589? 598 (1995).
    Article CAS Google Scholar
  40. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72? 74 (1999).
    Article CAS Google Scholar
  41. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168 ?172 (2000).Reports that two single molecules, each in a different colour, can be watched on a live cell as they engage in fluorescence resonance energy transfer.
    Article CAS Google Scholar
  42. Haugh, J. M., Codazzi, F., Teruel, M. & Meyer, T. Spatial sensing in fibroblasts mediated by 3' phosphoinositides. J. Cell Biol. 151, 1269?1280 ( 2000).
    Article CAS Google Scholar
  43. Steyer, J. A. & Almers, W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys. J. 76, 2262?2271 (1999).
    Article CAS Google Scholar
  44. Rohrbach, A. Observing secretory granules with a multiangle evanescent wave microscope . Biophys. J. 78, 2641? 2654 (2000).
    Article CAS Google Scholar
  45. Axelrod, D., Hellen, E. H. & Fulbright, R. in Topics in Fluorescence Spectroscopy Vol. 3 (ed. Lakowicz, J. R.) 289?343 (Plenum, New York, 1992).An excellent and readable review covering most aspects of evanescent field fluorescence microscopy.
    Google Scholar
  46. Hellen, E. H. & Axelrod, D. Fluroescence emission at dieletric and metal-film interfaces. J. Opt. Soc. Am. 4, 337?350 (1987).
    Article CAS Google Scholar
  47. Olveczky, B. P., Periasamy, N. & Verkman, A. S. Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy . Biophys. J. 73, 2836? 2847 (1997).
    Article CAS Google Scholar
  48. Terakawa, S., Sakurai, T. & Abe, K. Development of an objective lens with a high numerical aperture for light microscopy. Bioimages 5, 24 (1997).
    Google Scholar
  49. Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. 6, 6? 13 (2001).
    Article CAS Google Scholar
  50. Ambrose, E. J. The movements of fibrocytes. Exp. Cell Res. 8, 54?73 (1961).
    Article Google Scholar
  51. McCutchen, C. W. Optical systems for observing surface topography by frustrated total internal reflection and by interference. The Review of Scientific Instruments 35, 1340?1345 ( 1964).
    Article Google Scholar
  52. Axelrod, D. Cell?substrate contacts illuminated by total internal reflection fluorescence . J. Cell Biol. 89, 141? 145 (1981).
    Article CAS Google Scholar
  53. Lanni, F., Waggoner, A. S. & Taylor, D. L. Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy. J. Cell Biol. 100, 1091?1102 (1985).
    Article CAS Google Scholar
  54. Stout, A. L. & Axelrod, D. Evanescent field exitation of fluorescence by epi-illumination microscopy. Appl. Opt. 28, 5237?5242 (1989).
    Article CAS Google Scholar
  55. Bryngdahl, O. in Progress in Optics (ed. Wolf, E.) 169?221 (North?Holland, Amsterdam, 1973).
    Google Scholar
  56. Gingell, D., Heavens, O. S. & Mellor, J. S. General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell?substratum topography. J. Cell Sci. 87, 677? 693 (1987).
    PubMed Google Scholar
  57. Burmeister, J. S., Truskey, G. A. & Reichert, W. M. Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell/substrate contacts. J. Microsc. 173, 39?51. (1994).
    Article CAS Google Scholar
  58. Farinas, J., Simanek, V. & Verkman, A. S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys. J. 68, 1613?1620 (1995).
    Article CAS Google Scholar
  59. Omann, G. M. & Axelrod, D. Membrane-proximal calcium transients in stimulated neutrophils detected by total internal reflection fluorescence . Biophys. J. 71, 2885? 2891 (1996).
    Article CAS Google Scholar
  60. Cleemann, L., DiMassa, G. & Morad, M. Ca2+ sparks within 200 nm of the sarcolemma of rat ventricular cells: evidence from total internal reflection fluorescence microscopy. Adv. Exp. Med. Biol. 430, 57 ?65 (1997).
    Article CAS Google Scholar

Download references