Spatial regulation of the exocyst complex by Rho1 GTPase (original) (raw)

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).
    Article CAS Google Scholar
  2. Lew, D. J. & Reed, S. I. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev. 5, 17–23 (1995).
    Article CAS Google Scholar
  3. Madden, K. & Snyder, M. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52, 687–744 (1998).
    Article CAS Google Scholar
  4. Chant, J. Cell polarity in yeast. Annu. Rev. Cell. Dev. Biol. 15, 365–391 (1999).
    Article CAS Google Scholar
  5. Finger, F. P. & Novick, P. J. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609–612 (1998).
    Article CAS Google Scholar
  6. Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143, 1931–1945 (1998).
    Article CAS Google Scholar
  7. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791–808 (1999).
    Article CAS Google Scholar
  8. Govindin, B., Bowser, R. & Novick, P. The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128, 1055–1068 (1995).
    Article Google Scholar
  9. Karpova, T. S. et al. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol. Biol. Cell 11, 1727–1737 (2000).
    Article CAS Google Scholar
  10. Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, E17–E22 (1999).
    Article CAS Google Scholar
  11. Guo, W., Sacher, M., Barrowman, J., Ferro-Novick, S. & Novick, P. Protein complexes in transport vesicle targeting. Trends Cell Biol. 10, 251–255 (2000).
    Article CAS Google Scholar
  12. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).
    Article CAS Google Scholar
  13. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).
    Article CAS Google Scholar
  14. Lazar, T., Gotte, M. & Gallwitz, D. Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem. Sci. 22, 468–472 (1997).
    Article CAS Google Scholar
  15. TerBush, D. R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299–312 (1995).
    Article CAS Google Scholar
  16. TerBush, D. R., Maurice, T. M., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).
    Article CAS Google Scholar
  17. Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).
    Article CAS Google Scholar
  18. Hsu, S.-C. et al. The mammalian brain rsec6/8 complex. Neuron 17, 1209–1219 (1996).
    Article CAS Google Scholar
  19. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).
    Article CAS Google Scholar
  20. Guo, W., Grant, A. & Novick, P. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274, 23558–23564 (1999).
    Article CAS Google Scholar
  21. Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).
    Article CAS Google Scholar
  22. Hazuka, C. D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci. 19, 1324–1334 (1999).
    Article CAS Google Scholar
  23. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).
    Article CAS Google Scholar
  24. Walch-Solimena, C., Collins, R. N. & Novick, P. J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell. Biol. 137, 1495–1509 (1997).
    Article CAS Google Scholar
  25. Carr, C. M., Grote, E., Munson, M., Hughson, F. M. & Novick, P. J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344 (1999).
    Article CAS Google Scholar
  26. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article CAS Google Scholar
  27. Cabib, E., Drgonova, J. & Drgon, T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu. Rev. Biochem. 67, 307–333 (1998).
    Article CAS Google Scholar
  28. Schmidt, A. & Hall, M. N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).
    Article CAS Google Scholar
  29. Helliwell, S. B., Schmidt, A., Ohya, Y. & Hall, M. N. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr. Biol. 8, 1211–1214 (1998).
    Article CAS Google Scholar
  30. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997); erratum ibid. 146, 1201 (1999).
    Article CAS Google Scholar
  31. Nonaka, H. et al. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14, 5931–5938 (1995).
    Article CAS Google Scholar
  32. Drgonova, J., Drgon, T., Roh, D. H. & Cabib, E. The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J. Cell Biol. 146, 373–387 (1999).
    Article CAS Google Scholar
  33. Haarer, B. K. et al. SEC3 mutations are synthetically lethal with profilin mutations and cause defects in diploid-specific bud-site selection. Genetics 144, 495–510 (1996).
    CAS Google Scholar
  34. Yamochi, W. et al. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol. 125, 1077–1093 (1994).
    Article CAS Google Scholar
  35. Novick, P. & Botstein, D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40, 405–416 (1985).
    Article CAS Google Scholar
  36. Robinson, N. G. G. et al. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol. 19, 3580–3587 (1999).
    Article CAS Google Scholar
  37. Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999).
    Article CAS Google Scholar
  38. Kim, S. K. Cell polarity: new PARtners for Cdc42 and Rac. Nature Cell Biol. 2, E143–E145 (2000).
    Article CAS Google Scholar
  39. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).
    Article CAS Google Scholar
  40. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).
    Article CAS Google Scholar
  41. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).
    Article CAS Google Scholar
  42. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 137, 1421–1431 (1997).
    Article CAS Google Scholar
  43. Reck-Peterson, S. L., Novick, P. J. & Mooseker, M. S. The tail of a yeast class V myosin, myo2p, functions as a localization domain. Mol. Biol. Cell 10, 1001–1017 (1999).
    Article CAS Google Scholar
  44. Roth, D., Guo, W. & Novick, P. Dominant negative alleles of SEC10 reveal distinct domains involved in secretion and morphogenesis in yeast. Mol. Biol. Cell 9, 1725–1739 (1998).
    Article CAS Google Scholar
  45. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 (1996).
    Article CAS Google Scholar

Download references