Spatial regulation of the exocyst complex by Rho1 GTPase (original) (raw)
References
Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell84, 335–344 (1996). ArticleCAS Google Scholar
Lew, D. J. & Reed, S. I. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev.5, 17–23 (1995). ArticleCAS Google Scholar
Madden, K. & Snyder, M. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol.52, 687–744 (1998). ArticleCAS Google Scholar
Chant, J. Cell polarity in yeast. Annu. Rev. Cell. Dev. Biol.15, 365–391 (1999). ArticleCAS Google Scholar
Finger, F. P. & Novick, P. J. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol.142, 609–612 (1998). ArticleCAS Google Scholar
Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol.143, 1931–1945 (1998). ArticleCAS Google Scholar
Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol.147, 791–808 (1999). ArticleCAS Google Scholar
Govindin, B., Bowser, R. & Novick, P. The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol.128, 1055–1068 (1995). Article Google Scholar
Karpova, T. S. et al. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol. Biol. Cell11, 1727–1737 (2000). ArticleCAS Google Scholar
Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol.1, E17–E22 (1999). ArticleCAS Google Scholar
Guo, W., Sacher, M., Barrowman, J., Ferro-Novick, S. & Novick, P. Protein complexes in transport vesicle targeting. Trends Cell Biol.10, 251–255 (2000). ArticleCAS Google Scholar
Rothman, J. E. Mechanisms of intracellular protein transport. Nature372, 55–63 (1994). ArticleCAS Google Scholar
Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol.9, 496–504 (1997). ArticleCAS Google Scholar
Lazar, T., Gotte, M. & Gallwitz, D. Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem. Sci.22, 468–472 (1997). ArticleCAS Google Scholar
TerBush, D. R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol.130, 299–312 (1995). ArticleCAS Google Scholar
TerBush, D. R., Maurice, T. M., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J.15, 6483–6494 (1996). ArticleCAS Google Scholar
Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell92, 559–571 (1998). ArticleCAS Google Scholar
Hsu, S.-C. et al. The mammalian brain rsec6/8 complex. Neuron17, 1209–1219 (1996). ArticleCAS Google Scholar
Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J.18, 1071–1080 (1999). ArticleCAS Google Scholar
Guo, W., Grant, A. & Novick, P. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem.274, 23558–23564 (1999). ArticleCAS Google Scholar
Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell79, 245–258 (1994). ArticleCAS Google Scholar
Hazuka, C. D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci.19, 1324–1334 (1999). ArticleCAS Google Scholar
Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). ArticleCAS Google Scholar
Walch-Solimena, C., Collins, R. N. & Novick, P. J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell. Biol.137, 1495–1509 (1997). ArticleCAS Google Scholar
Carr, C. M., Grote, E., Munson, M., Hughson, F. M. & Novick, P. J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol.146, 333–344 (1999). ArticleCAS Google Scholar
Hall, A. Rho GTPases and the actin cytoskeleton. Science279, 509–514 (1998). ArticleCAS Google Scholar
Cabib, E., Drgonova, J. & Drgon, T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu. Rev. Biochem.67, 307–333 (1998). ArticleCAS Google Scholar
Schmidt, A. & Hall, M. N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol.14, 305–338 (1998). ArticleCAS Google Scholar
Helliwell, S. B., Schmidt, A., Ohya, Y. & Hall, M. N. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr. Biol.8, 1211–1214 (1998). ArticleCAS Google Scholar
Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol.137, 399–416 (1997); erratum ibid.146, 1201 (1999). ArticleCAS Google Scholar
Nonaka, H. et al. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J.14, 5931–5938 (1995). ArticleCAS Google Scholar
Drgonova, J., Drgon, T., Roh, D. H. & Cabib, E. The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J. Cell Biol.146, 373–387 (1999). ArticleCAS Google Scholar
Haarer, B. K. et al. SEC3 mutations are synthetically lethal with profilin mutations and cause defects in diploid-specific bud-site selection. Genetics144, 495–510 (1996). CAS Google Scholar
Yamochi, W. et al. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol.125, 1077–1093 (1994). ArticleCAS Google Scholar
Novick, P. & Botstein, D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell40, 405–416 (1985). ArticleCAS Google Scholar
Robinson, N. G. G. et al. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol.19, 3580–3587 (1999). ArticleCAS Google Scholar
Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell10, 4121–4133 (1999). ArticleCAS Google Scholar
Kim, S. K. Cell polarity: new PARtners for Cdc42 and Rac. Nature Cell Biol.2, E143–E145 (2000). ArticleCAS Google Scholar
Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol.1, 8–13 (1999). ArticleCAS Google Scholar
Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol.2, 540–547 (2000). ArticleCAS Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol.2, 531–539 (2000). ArticleCAS Google Scholar
Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol.137, 1421–1431 (1997). ArticleCAS Google Scholar
Reck-Peterson, S. L., Novick, P. J. & Mooseker, M. S. The tail of a yeast class V myosin, myo2p, functions as a localization domain. Mol. Biol. Cell10, 1001–1017 (1999). ArticleCAS Google Scholar
Roth, D., Guo, W. & Novick, P. Dominant negative alleles of SEC10 reveal distinct domains involved in secretion and morphogenesis in yeast. Mol. Biol. Cell9, 1725–1739 (1998). ArticleCAS Google Scholar
Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J.15, 6060–6068 (1996). ArticleCAS Google Scholar