TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b (original) (raw)

References

  1. Alexandrow, M. G. & Moses, H. L. Transforming growth factor β and cell cycle regulation. Cancer Res. 55, 1452–1457 (1995).
    CAS PubMed Google Scholar
  2. Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295– 309 (2000).
    Article Google Scholar
  3. Daniel, C. W., Silberstein, G. B., Van Horn, K., Strickland, P. & Robinson, S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization . Dev. Biol. 135, 20–30 (1989).
    Article CAS Google Scholar
  4. Pierce, D. F. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev. 7, 2308–2317 (1993).
    Article CAS Google Scholar
  5. Nguyen, A. V. & Pollard, J. W. Transforming growth factor B3 induces cell death during the first stage of mammary gland involution. Development 127, 3107–3118 (2000).
    CAS PubMed Google Scholar
  6. Gold, L. I. The role for transforming growth factorβ (TGF-β) in human cancer . Crit. Rev. Oncogenet. 10, 303– 360 (1999).
    CAS Google Scholar
  7. de Caestecker, M. P., Piek, E. & Roberts, A. B. Role of transforming growth factor-beta signaling in cancer. J. Natl Cancer Inst. USA 92, 1388 –1402 (2000).
    Article CAS Google Scholar
  8. Fernandez-Pol, J. A., Talkad, V. D., Klos, D. J. & Hamilton, P. D. Suppression of the EGF-dependent induction of c-myc proto-oncogene expression by transforming growth factor beta in a human breast carcinoma cell line. Biochem. Biophys. Res. Commun. 144, 1197– 1205 (1987).
    Article CAS Google Scholar
  9. Coffey, R. J. Jr et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol. Cell. Biol. 8, 3088–3093 ( 1988).
    Article CAS Google Scholar
  10. Facchini, L. M. & Penn, L. Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights . FASEB J. 12, 633–651 (1998).
    Article CAS Google Scholar
  11. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).
    Article CAS Google Scholar
  12. Iavarone, A. & Massagué, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15. Nature 387, 417– 422 (1997).
    Article CAS Google Scholar
  13. Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371, 257–261 (1994).
    Article CAS Google Scholar
  14. Reynisdóttir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arest in response to TGF-β. Genes Dev. 9, 1831– 1845 (1995).
    Article Google Scholar
  15. Sandhu, C. et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B–Cdk4 complexes, and inhibits cyclin D1–Cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17, 2458– 2467 (1997).
    Article CAS Google Scholar
  16. Reynisdóttir, I. & Massagué, J. The subcellular location of p15INK4b and p27Kip1 coordinate their inhibitory interactions with cdk4 and Cdk2. Genes Dev. 11, 492–503 (1997).
    Article Google Scholar
  17. Datto, M. B. et al. Transforming growth factor-β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanisms. Proc. Natl Acad. Sci. USA 92, 5545–5549 (1995).
    Article CAS Google Scholar
  18. Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor beta required for activation of the p15(INK4B) G(1) arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).
    Article CAS Google Scholar
  19. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).
    Article CAS Google Scholar
  20. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 ( 1997).
    Article CAS Google Scholar
  21. Li, J-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X-F. Transforming growth factor-β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753 (1995).
    Article CAS Google Scholar
  22. Smale, S. T. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351, 73– 88 (1997).
    Article CAS Google Scholar
  23. Feng, X. H., Lin, X. & Derynck, R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J. 19, 5178–5193 (2000).
    Article CAS Google Scholar
  24. Brodin, G., Ahgren, A., ten Dijke, P., Heldin, C. H. & Heuchel, R. Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J. Biol. Chem. 275, 29023–29030 (2000).
    Article CAS Google Scholar
  25. von Gersdorff, G. et al. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275, 11320–11326 ( 2000).
    Article CAS Google Scholar
  26. Denissova, N. G., Pouponnot, C., Long, J., He, D. & Liu, F. Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl Acad. Sci. USA 97, 6397–6402 (2000).
    Article CAS Google Scholar
  27. Nagarajan, R. P., Zhang, J., Li, W. & Chen, Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412–33418 ( 1999).
    Article CAS Google Scholar
  28. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner of MAD proteins in TGF-β signalling. Nature 383, 691– 696 (1996).
    Article CAS Google Scholar
  29. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators . Mol. Cell 1, 611–617 (1998).
    Article CAS Google Scholar
  30. Espinas, M. L. et al. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J. Biol. Chem. 274, 16461–16469 (1999).
    Article CAS Google Scholar
  31. Bardwell, V. J. & Treisman, R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8, 1664–1677 (1994).
    Article CAS Google Scholar
  32. Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070– 4079 (1994).
    Article CAS Google Scholar
  33. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).
    Article CAS Google Scholar
  34. Zentella, A., Weis, F. M. B., Ralph, D. A., Laiho, M. & Massagué, J. Early gene responses to transforming growth factor-β in cells lacking growth suppressive RB function . Mol. Cell. Biol. 11, 4952– 4958 (1991).
    Article CAS Google Scholar
  35. Yeo, C. Y., Chen, X. & Whitman, M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J. Biol. Chem. 274, 26584–26590 ( 1999).
    Article CAS Google Scholar
  36. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP–Smad and Olf signaling pathways. Cell 100 , 229–240 (2000).
    Article CAS Google Scholar
  37. Germain, S., Howell, M., Esslemont, G. M. & Hill, C. S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14, 435–451 ( 2000).
    CAS PubMed PubMed Central Google Scholar
  38. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999).
    Article CAS Google Scholar
  39. Pardali, K. et al. Role of smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-beta. J. Biol. Chem. 275, 29244–29256. (2000 ).
    Article CAS Google Scholar
  40. Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21Cip1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proc. Natl Acad. Sci. USA (2000).
  41. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA-binding in TGF-β signaling. Cell 94, 585–594 (1998).
    Article CAS Google Scholar
  42. Chen, C. R., Kang, Y. & Massagué, J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc.Natl Acad. Sci. USA 98, 992–999 (2001).
    Article CAS Google Scholar
  43. Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β1 linked to suppression of retinoblastoma protein phosphorylation. Cell 62, 175– 185 (1990).
    Article CAS Google Scholar
  44. Liu, B., Dou, C. L., Prabhu, L. & Lai, E. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals . Mol. Cell. Biol. 19, 424– 430 (1999).
    Article Google Scholar
  45. Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by ongenic ras. Genes Dev. 13, 804–816 ( 1999).
    Article CAS Google Scholar
  46. Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A smad transcriptional corepressor. Cell 97, 29 –39 (1999).
    Article CAS Google Scholar
  47. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGFβ signalling pathways . Nature 383, 832–836 (1996).
    Article CAS Google Scholar

Download references