TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b (original) (raw)
References
Alexandrow, M. G. & Moses, H. L. Transforming growth factor β and cell cycle regulation. Cancer Res.55, 1452–1457 (1995). CASPubMed Google Scholar
Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell103, 295– 309 (2000). Article Google Scholar
Daniel, C. W., Silberstein, G. B., Van Horn, K., Strickland, P. & Robinson, S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization . Dev. Biol.135, 20–30 (1989). ArticleCAS Google Scholar
Pierce, D. F. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev.7, 2308–2317 (1993). ArticleCAS Google Scholar
Nguyen, A. V. & Pollard, J. W. Transforming growth factor B3 induces cell death during the first stage of mammary gland involution. Development127, 3107–3118 (2000). CASPubMed Google Scholar
Gold, L. I. The role for transforming growth factorβ (TGF-β) in human cancer . Crit. Rev. Oncogenet.10, 303– 360 (1999). CAS Google Scholar
de Caestecker, M. P., Piek, E. & Roberts, A. B. Role of transforming growth factor-beta signaling in cancer. J. Natl Cancer Inst. USA92, 1388 –1402 (2000). ArticleCAS Google Scholar
Fernandez-Pol, J. A., Talkad, V. D., Klos, D. J. & Hamilton, P. D. Suppression of the EGF-dependent induction of c-myc proto-oncogene expression by transforming growth factor beta in a human breast carcinoma cell line. Biochem. Biophys. Res. Commun.144, 1197– 1205 (1987). ArticleCAS Google Scholar
Coffey, R. J. Jr et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol. Cell. Biol.8, 3088–3093 ( 1988). ArticleCAS Google Scholar
Facchini, L. M. & Penn, L. Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights . FASEB J.12, 633–651 (1998). ArticleCAS Google Scholar
Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol.19, 1–11 (1999). ArticleCAS Google Scholar
Iavarone, A. & Massagué, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15. Nature387, 417– 422 (1997). ArticleCAS Google Scholar
Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature371, 257–261 (1994). ArticleCAS Google Scholar
Reynisdóttir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arest in response to TGF-β. Genes Dev.9, 1831– 1845 (1995). Article Google Scholar
Sandhu, C. et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B–Cdk4 complexes, and inhibits cyclin D1–Cdk4 association in human mammary epithelial cells. Mol. Cell. Biol.17, 2458– 2467 (1997). ArticleCAS Google Scholar
Reynisdóttir, I. & Massagué, J. The subcellular location of p15INK4b and p27Kip1 coordinate their inhibitory interactions with cdk4 and Cdk2. Genes Dev.11, 492–503 (1997). Article Google Scholar
Datto, M. B. et al. Transforming growth factor-β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanisms. Proc. Natl Acad. Sci. USA92, 5545–5549 (1995). ArticleCAS Google Scholar
Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor beta required for activation of the p15(INK4B) G(1) arrest pathway. Mol. Cell. Biol.19, 5913–5922 (1999). ArticleCAS Google Scholar
Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol.3, 392–399 (2001). ArticleCAS Google Scholar
Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J.16, 5672–5686 ( 1997). ArticleCAS Google Scholar
Li, J-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X-F. Transforming growth factor-β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem.270, 26750–26753 (1995). ArticleCAS Google Scholar
Smale, S. T. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta1351, 73– 88 (1997). ArticleCAS Google Scholar
Feng, X. H., Lin, X. & Derynck, R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J.19, 5178–5193 (2000). ArticleCAS Google Scholar
Brodin, G., Ahgren, A., ten Dijke, P., Heldin, C. H. & Heuchel, R. Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J. Biol. Chem.275, 29023–29030 (2000). ArticleCAS Google Scholar
von Gersdorff, G. et al. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem.275, 11320–11326 ( 2000). ArticleCAS Google Scholar
Denissova, N. G., Pouponnot, C., Long, J., He, D. & Liu, F. Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl Acad. Sci. USA97, 6397–6402 (2000). ArticleCAS Google Scholar
Nagarajan, R. P., Zhang, J., Li, W. & Chen, Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem.274, 33412–33418 ( 1999). ArticleCAS Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner of MAD proteins in TGF-β signalling. Nature383, 691– 696 (1996). ArticleCAS Google Scholar
Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators . Mol. Cell1, 611–617 (1998). ArticleCAS Google Scholar
Espinas, M. L. et al. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J. Biol. Chem.274, 16461–16469 (1999). ArticleCAS Google Scholar
Bardwell, V. J. & Treisman, R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev.8, 1664–1677 (1994). ArticleCAS Google Scholar
Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J.13, 4070– 4079 (1994). ArticleCAS Google Scholar
Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA89, 5547–5551 (1992). ArticleCAS Google Scholar
Zentella, A., Weis, F. M. B., Ralph, D. A., Laiho, M. & Massagué, J. Early gene responses to transforming growth factor-β in cells lacking growth suppressive RB function . Mol. Cell. Biol.11, 4952– 4958 (1991). ArticleCAS Google Scholar
Yeo, C. Y., Chen, X. & Whitman, M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J. Biol. Chem.274, 26584–26590 ( 1999). ArticleCAS Google Scholar
Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP–Smad and Olf signaling pathways. Cell100 , 229–240 (2000). ArticleCAS Google Scholar
Germain, S., Howell, M., Esslemont, G. M. & Hill, C. S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev.14, 435–451 ( 2000). CASPubMedPubMed Central Google Scholar
Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol.1, 260–266 (1999). ArticleCAS Google Scholar
Pardali, K. et al. Role of smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-beta. J. Biol. Chem.275, 29244–29256. (2000 ). ArticleCAS Google Scholar
Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21Cip1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proc. Natl Acad. Sci. USA (2000).
Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA-binding in TGF-β signaling. Cell94, 585–594 (1998). ArticleCAS Google Scholar
Chen, C. R., Kang, Y. & Massagué, J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc.Natl Acad. Sci. USA98, 992–999 (2001). ArticleCAS Google Scholar
Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β1 linked to suppression of retinoblastoma protein phosphorylation. Cell62, 175– 185 (1990). ArticleCAS Google Scholar
Liu, B., Dou, C. L., Prabhu, L. & Lai, E. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals . Mol. Cell. Biol.19, 424– 430 (1999). Article Google Scholar
Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by ongenic ras. Genes Dev.13, 804–816 ( 1999). ArticleCAS Google Scholar
Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A smad transcriptional corepressor. Cell97, 29 –39 (1999). ArticleCAS Google Scholar
Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGFβ signalling pathways . Nature383, 832–836 (1996). ArticleCAS Google Scholar