Repression of p15INK4b expression by Myc through association with Miz-1 (original) (raw)
References
Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol.16, 653–699 (2000). ArticleCAS Google Scholar
O'Hagan, R. C. et al. Gene-target recognition among members of the Myc superfamily and implications for oncogenesis. Nature Genet.24, 113–119 (2000). ArticleCAS Google Scholar
Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that Myc regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA97, 3260–3265 (2000). ArticleCAS Google Scholar
Freytag, S. O. & Geddes, T. J. Reciprocal regulation of adipogenesis by Myc and C/EBPα. Science256, 379–382 (1992). ArticleCAS Google Scholar
Wu, K. J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science283, 676–679 (1999). ArticleCAS Google Scholar
Warner, B. J., Blain, S. W., Seoane, J. & Massagué, J. Myc downregulation by transforming growth factor required for activation of the p15Ink4b G1 arrest pathway. Mol. Cell. Biol.19, 5913–5922 (1999). ArticleCAS Google Scholar
Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21Cip1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest. Proc. Natl Acad. Sci. USA97, 9498–9503 (2000). ArticleCAS Google Scholar
Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J.13, 4070–4079 (1994). ArticleCAS Google Scholar
Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J.16, 5672–5686 (1997). ArticleCAS Google Scholar
Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J.18, 717–726 (1999). ArticleCAS Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). ArticleCAS Google Scholar
Lam, E. W-F. et al. HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J.13, 871–878 (1994). ArticleCAS Google Scholar
Beijersbergen, R. L., Carlée, L., Kerkhoven, R. M. & Bernards, R. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev.9, 1340–1352 (1995). ArticleCAS Google Scholar
McConnell, B. B., Starborg, M., Brookes, S. & Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol.8, 351–354 (1998). ArticleCAS Google Scholar
Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res.23, 1686–1690 (1995). ArticleCAS Google Scholar
Li, J. M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X. F. Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem.270, 26750–26753 (1995). ArticleCAS Google Scholar
Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl Acad. Sci. USA95, 13887–13892 (1998). ArticleCAS Google Scholar
Datto, M. B., Hu, P. P., Kowalik, T. F., Yingling, J. & Wang, X. F. The viral oncoprotein E1A blocks transforming growth factor β-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol. Cell. Biol.17, 2030–2037 (1997). ArticleCAS Google Scholar
Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell72, 211–222 (1993). ArticleCAS Google Scholar
Desbarats, L., Gaubatz, S. & Eilers, M. Discrimination between different E-box binding proteins at an endogenous target gene of Myc. Genes Dev.10, 447–460 (1996). ArticleCAS Google Scholar
Malumbres, M. et al. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol. Cell. Biol.20, 2915–2925 (2000). ArticleCAS Google Scholar
Erickson, S. et al. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene17, 595–602 (1998). ArticleCAS Google Scholar
Quelle, D. E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene11, 635–645 (1995). CAS Google Scholar
Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene8, 2457–2467 (1993). CAS Google Scholar
Lukas, J. et al. Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev.11, 1479–1492 (1997). ArticleCAS Google Scholar
Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCAS Google Scholar
Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev.12, 1769–1774 (1998). ArticleCAS Google Scholar
Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nature Genet.21, 220–224 (1999). ArticleCAS Google Scholar
Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene18, 1219–1226 (1999). ArticleCAS Google Scholar
Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCAS Google Scholar
Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol.2, 148–155 (2000). ArticleCAS Google Scholar
Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J.16, 5322–5333 (1997). ArticleCAS Google Scholar
Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature407, 592–598 (2000). ArticleCAS Google Scholar
Herman, J. G. et al. Distinct patterns of inactivation of p15INK4b and p16INK4a characterize the major types of hematological malignancies. Cancer Res.57, 837–841 (1997). CAS Google Scholar
Hannon, G. J. & Beach, D. p15INK4b is a potential effector of cell cycle arrest mediated by TGF-β. Nature371, 257–261 (1994). ArticleCAS Google Scholar
Feng, X. H., Lin, X. & Derynck, R. Smad2, smad3 and smad4 cooperate with Sp1 to induce p15 (Ink4B) transcription in response to TGF-β. EMBO J.19, 5178–5193 (2000). ArticleCAS Google Scholar
Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor INK4b. Nature Cell Biol.4, 400–408.
Coffey, R. J. J. et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor β. Mol. Cell. Biol.8, 3088 (1988). ArticleCAS Google Scholar
Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res.18, 3587–3596 (1990). ArticleCAS Google Scholar
Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle induction and sequestration of p27. EMBO J.18, 5321–5333 (1999). ArticleCAS Google Scholar
Grignani, F. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res.58, 14–19 (1998). CAS Google Scholar
Steiner, P. et al. Identification of a Myc-dependent step during the formation of active G1 cyclin/CDK complexes. EMBO J.14, 4814–4826 (1995). ArticleCAS Google Scholar
Lukas, J., Pagano, M., Staskova, Z., Draetta, G. & Bartek, J. Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumor cell lines. Oncogene9, 707–718 (1994). CAS Google Scholar
Gaubatz, S. et al. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J.14, 1508–1529 (1995). ArticleCAS Google Scholar
Evan, G. I. & Hancock, D. C. Studies on the interaction of the human c-Myc protein with cell nuclei: p62 c-Myc as a member of a discrete subset of nuclear proteins. Cell43, 253–261 (1985). ArticleCAS Google Scholar
Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell100, 229–240 (2000). ArticleCAS Google Scholar
Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol.19, 4672–4683 (1999). ArticleCAS Google Scholar