Repression of p15INK4b expression by Myc through association with Miz-1 (original) (raw)

References

  1. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).
    Article CAS Google Scholar
  2. O'Hagan, R. C. et al. Gene-target recognition among members of the Myc superfamily and implications for oncogenesis. Nature Genet. 24, 113–119 (2000).
    Article CAS Google Scholar
  3. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that Myc regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).
    Article CAS Google Scholar
  4. Freytag, S. O. & Geddes, T. J. Reciprocal regulation of adipogenesis by Myc and C/EBPα. Science 256, 379–382 (1992).
    Article CAS Google Scholar
  5. Wu, K. J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science 283, 676–679 (1999).
    Article CAS Google Scholar
  6. Warner, B. J., Blain, S. W., Seoane, J. & Massagué, J. Myc downregulation by transforming growth factor required for activation of the p15Ink4b G1 arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).
    Article CAS Google Scholar
  7. Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21Cip1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest. Proc. Natl Acad. Sci. USA 97, 9498–9503 (2000).
    Article CAS Google Scholar
  8. Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).
    Article CAS Google Scholar
  9. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).
    Article CAS Google Scholar
  10. Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999).
    Article CAS Google Scholar
  11. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
    Article CAS Google Scholar
  12. Lam, E. W-F. et al. HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J. 13, 871–878 (1994).
    Article CAS Google Scholar
  13. Beijersbergen, R. L., Carlée, L., Kerkhoven, R. M. & Bernards, R. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev. 9, 1340–1352 (1995).
    Article CAS Google Scholar
  14. McConnell, B. B., Starborg, M., Brookes, S. & Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351–354 (1998).
    Article CAS Google Scholar
  15. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).
    Article CAS Google Scholar
  16. Li, J. M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X. F. Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753 (1995).
    Article CAS Google Scholar
  17. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998).
    Article CAS Google Scholar
  18. Datto, M. B., Hu, P. P., Kowalik, T. F., Yingling, J. & Wang, X. F. The viral oncoprotein E1A blocks transforming growth factor β-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol. Cell. Biol. 17, 2030–2037 (1997).
    Article CAS Google Scholar
  19. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).
    Article CAS Google Scholar
  20. Desbarats, L., Gaubatz, S. & Eilers, M. Discrimination between different E-box binding proteins at an endogenous target gene of Myc. Genes Dev. 10, 447–460 (1996).
    Article CAS Google Scholar
  21. Malumbres, M. et al. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol. Cell. Biol. 20, 2915–2925 (2000).
    Article CAS Google Scholar
  22. Erickson, S. et al. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene 17, 595–602 (1998).
    Article CAS Google Scholar
  23. Quelle, D. E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11, 635–645 (1995).
    CAS Google Scholar
  24. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).
    CAS Google Scholar
  25. Lukas, J. et al. Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev. 11, 1479–1492 (1997).
    Article CAS Google Scholar
  26. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).
    Article CAS Google Scholar
  27. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).
    Article CAS Google Scholar
  28. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nature Genet. 21, 220–224 (1999).
    Article CAS Google Scholar
  29. Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 (1999).
    Article CAS Google Scholar
  30. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).
    Article CAS Google Scholar
  31. Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol. 2, 148–155 (2000).
    Article CAS Google Scholar
  32. Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J. 16, 5322–5333 (1997).
    Article CAS Google Scholar
  33. Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).
    Article CAS Google Scholar
  34. Herman, J. G. et al. Distinct patterns of inactivation of p15INK4b and p16INK4a characterize the major types of hematological malignancies. Cancer Res. 57, 837–841 (1997).
    CAS Google Scholar
  35. Hannon, G. J. & Beach, D. p15INK4b is a potential effector of cell cycle arrest mediated by TGF-β. Nature 371, 257–261 (1994).
    Article CAS Google Scholar
  36. Feng, X. H., Lin, X. & Derynck, R. Smad2, smad3 and smad4 cooperate with Sp1 to induce p15 (Ink4B) transcription in response to TGF-β. EMBO J. 19, 5178–5193 (2000).
    Article CAS Google Scholar
  37. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor INK4b. Nature Cell Biol. 4, 400–408.
  38. Coffey, R. J. J. et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor β. Mol. Cell. Biol. 8, 3088 (1988).
    Article CAS Google Scholar
  39. Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).
    Article CAS Google Scholar
  40. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle induction and sequestration of p27. EMBO J. 18, 5321–5333 (1999).
    Article CAS Google Scholar
  41. Grignani, F. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58, 14–19 (1998).
    CAS Google Scholar
  42. Steiner, P. et al. Identification of a Myc-dependent step during the formation of active G1 cyclin/CDK complexes. EMBO J. 14, 4814–4826 (1995).
    Article CAS Google Scholar
  43. Lukas, J., Pagano, M., Staskova, Z., Draetta, G. & Bartek, J. Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumor cell lines. Oncogene 9, 707–718 (1994).
    CAS Google Scholar
  44. Gaubatz, S. et al. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 14, 1508–1529 (1995).
    Article CAS Google Scholar
  45. Evan, G. I. & Hancock, D. C. Studies on the interaction of the human c-Myc protein with cell nuclei: p62 c-Myc as a member of a discrete subset of nuclear proteins. Cell 43, 253–261 (1985).
    Article CAS Google Scholar
  46. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229–240 (2000).
    Article CAS Google Scholar
  47. Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19, 4672–4683 (1999).
    Article CAS Google Scholar

Download references