Positive and negative regulation of t-cell activation by adaptor proteins (original) (raw)
Straus, D. B. & Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell70, 585–593 (1992). CASPubMed Google Scholar
June, C. H., Fletcher, M. C., Ledbetter, J. A. & Samelson, L. E. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol.144, 1591–1599 (1990). CASPubMed Google Scholar
Chan, A. C., Irving, B. A., Fraser, J. D. & Weiss, A. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc. Natl Acad. Sci. USA88, 9166–9170 (1991). CASPubMedPubMed Central Google Scholar
Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell71, 649–662 (1992). CASPubMed Google Scholar
Iwashima, M., Irving, B. A., van Oers, N. S., Chan, A. C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science263, 1136–1139 (1994). CASPubMed Google Scholar
Jackman, J. K. et al. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J. Biol. Chem.270, 7029–7032 (1995). CASPubMed Google Scholar
Motto, D. G., Ross, S. E., Wu, J., Hendricks-Taylor, L. R. & Koretzky, G. A. Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J. Exp. Med.183, 1937–1943 (1996). CASPubMed Google Scholar
Yablonski, D., Kuhne, M. R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science281, 413–416 (1998). CASPubMed Google Scholar
Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell94, 229–238 (1998). CASPubMed Google Scholar
Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science281, 416–419 (1998).References10and11describe mice with targeted disruption of theSlp76gene. These mice have a complete block in thymocyte development, presumably due to impaired signalling through the pre-TCR, emphasizing the vital role played by SLP76 as a positive regulator of T-cell function. CASPubMed Google Scholar
Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell92, 83–92 (1998). CASPubMed Google Scholar
Zhang, W., Irvin, B. J., Trible, R. P., Abraham, R. T. & Samelson, L. E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol.11, 943–950 (1999). CASPubMed Google Scholar
Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity9, 239–246 (1998). CASPubMed Google Scholar
Lin, J., Weiss, A. & Finco, T. S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem.274, 28861–28864 (1999). CASPubMed Google Scholar
Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein Gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol.9, 67–75 (1999). CASPubMed Google Scholar
Asada, H. et al. Grf40, a novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med.189, 1383–1390 (1999). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem.275, 23355–23361 (2000). CASPubMed Google Scholar
Law, C. L. et al. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J. Exp. Med.189, 1243–1253 (1999). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. Essential role of LAT in T cell development. Immunity10, 323–332 (1999).Similar toSlp76-deficient animals,Lat−/−mice exhibit a complete arrest at the pro-T3 stage of thymocyte development. This result and studies in mutant variants of the Jurkat T-cell line indicate that Slp76 and LAT might function together as regulators of TCR signalling events. CASPubMed Google Scholar
Cheng, A. M. & Chan, A. C. Protein tyrosine kinases in thymocyte development. Curr. Opin. Immunol.9, 528–533 (1997). CASPubMed Google Scholar
van Oers, N. S. T cell receptor-mediated signs and signals governing T cell development. Semin. Immunol.11, 227–237 (1999). CASPubMed Google Scholar
Kruisbeek, A. M. et al. Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol. Today21, 637–644 (2000). CASPubMed Google Scholar
Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity9, 617–626 (1998). CASPubMed Google Scholar
Boerth, N. J. et al. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med.192, 1047–1058 (2000). CASPubMedPubMed Central Google Scholar
Williams, B. L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation. EMBO J.18, 1832–1844 (1999). CASPubMedPubMed Central Google Scholar
Lin, J. & Weiss, A. Identification of the minimal tyrosine residues required for LAT function. J. Biol. Chem.276, 29588–29595 (2001). CASPubMed Google Scholar
Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase c-γ1 (Plc-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol.21, 4208–4218 (2001). CASPubMedPubMed Central Google Scholar
Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science291, 1987–1991 (2001).Describes mice made deficient in Gads. UnlikeSlp76−/−orLat−/−mice, thymocyte development is normal in Gads-deficient animals and mature T cells populate the periphery, but severe defects in thymocyte selection and function of the mature T cells which develop. CASPubMed Google Scholar
Kikuchi, K. et al. Suppression of thymic development by the dominant-negative form of Gads. Int. Immunol.13, 777–783 (2001). CASPubMed Google Scholar
Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat. Immunol.2, 29–36 (2001). CASPubMed Google Scholar
Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity13, 463–473 (2000). CASPubMed Google Scholar
Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol.20, 6945–6957 (2000). CASPubMedPubMed Central Google Scholar
Fang, N. & Koretzky, G. A. SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity. J. Biol. Chem.274, 16206–16212 (1999). CASPubMed Google Scholar
Raab, M., da Silva, A. J., Findell, P. R. & Rudd, C. E. Regulation of Vav–SLP-76 binding by ZAP-70 and its relevance to TCR ζ/CD3 induction of interleukin-2. Immunity6, 155–164 (1997). CASPubMed Google Scholar
Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity9, 607–616 (1998). CASPubMed Google Scholar
Bokoch, G. M. et al. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem.271, 25746–25749 (1996). CASPubMed Google Scholar
Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y. & Schlessinger, J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem.271, 20997–21000 (1996). CASPubMed Google Scholar
Lu, W., Katz, S., Gupta, R. & Mayer, B. J. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol.7, 85–94 (1997). CASPubMed Google Scholar
Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature408, 732–735 (2000). CASPubMed Google Scholar
Ku, G. M., Yablonski, D., Manser, E., Lim, L. & Weiss, A. A PAK1–PIX–PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J.20, 457–465 (2001). CASPubMedPubMed Central Google Scholar
Bunnell, S. C., Kapoor, V., Trible, R. P., Zhang, W. & Samelson, L. E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity14, 315–329 (2001).Using real-time imaging, this paper shows that, unlike wild-type Jurkat cells,LAT-deficient Jurkat cells fail to spread on anti-TCR-coated coverslips. Reconstitution ofLATexpression rescues this signalling defect; however, the structural features of LAT required for this function and the precise signalling pathways required remain to be determined. CASPubMed Google Scholar
Borroto, A. et al. Rho regulates T cell receptor ITAM-induced lymphocyte spreading in an integrin-independent manner. Eur. J. Immunol.30, 3403–3410 (2000). CASPubMed Google Scholar
Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science290, 333–337 (2000).Highlights the use of a method based on FRET modified to examine the spatio-temporal pattern of RAC1 activation in living cells. CASPubMed Google Scholar
Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature411, 1065–1068 (2001). CASPubMed Google Scholar
Kang, P. J., Sanson, A., Lee, B. & Park, H. O. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science292, 1376–1378 (2001). CASPubMedPubMed Central Google Scholar
Marston, A. L., Chen, T., Yang, M. C., Belhumeur, P. & Chant, J. A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Curr. Biol.11, 803–807 (2001). CASPubMed Google Scholar
Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell105, 233–244 (2001). CASPubMed Google Scholar
Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell105, 115–126 (2001).Uses a combination of genetic and simulated crystallographic studies to show a unique role for the region linking the SH3 and SH2 domains of c-SRC and HCK. CASPubMed Google Scholar
Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature394, 901–904 (1998). CASPubMed Google Scholar
Chow, L. M., Fournel, M., Davidson, D. & Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature365, 156–160 (1993). CASPubMed Google Scholar
Koretzky, G. A., Picus, J., Thomas, M. L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature346, 66–68 (1990). CASPubMed Google Scholar
Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell74, 143–156 (1993). CASPubMed Google Scholar
Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med.191, 1591–1604 (2000).References53and54describe the initial characterization of PAG/CBP, indicating its localization in lipid rafts and its association with CSK. These papers provide evidence for how an adaptor protein might regulate an enzyme by directing its subcellular localization. CASPubMedPubMed Central Google Scholar
Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature404, 999–1003 (2000). CASPubMed Google Scholar
Takeuchi, S., Takayama, Y., Ogawa, A., Tamura, K. & Okada, M. Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J. Biol. Chem.275, 29183–29186 (2000). CASPubMed Google Scholar
Meng, W., Sawasdikosol, S., Burakoff, S. J. & Eck, M. J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP70 kinase. Nature398, 84–90 (1999). CASPubMed Google Scholar
Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science286, 309–312 (1999)This study shows a function for c-Cbl as an E3 ubiquitin-protein ligase with directin vitroevidence of a role for the TKB and RING domains. CASPubMed Google Scholar
Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem.274, 31707–31712 (1999). CASPubMed Google Scholar
Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J.18, 3616–3628 (1999). CASPubMedPubMed Central Google Scholar
Miyake, S., Lupher, M. L. Jr, Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc. Natl Acad. Sci. USA95, 7927–7932 (1998). CASPubMedPubMed Central Google Scholar
Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem.274, 22151–22154 (1999). CASPubMed Google Scholar
Lupher, M. L. Jr et al. Cbl-mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine-binding domain binding to Syk phosphotyrosine 323. J. Biol. Chem.273, 35273–35281 (1998). CASPubMed Google Scholar
Lupher, M. L. Jr, Reedquist, K. A., Miyake, S., Langdon, W. Y. & Band, H. A novel phosphotyrosine-binding domain in the N-terminal transforming region of Cbl interacts directly and selectively with ZAP-70 in T cells. J. Biol. Chem.271, 24063–24068 (1996). CASPubMed Google Scholar
Lupher, M. L. Jr, Songyang, Z., Shoelson, S. E., Cantley, L. C. & Band, H. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J. Biol. Chem.272, 33140–33144 (1997). CASPubMed Google Scholar
Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP70 in c-Cbl-deficient mice. Mol. Cell. Biol.18, 4872–4882 (1998). CASPubMedPubMed Central Google Scholar
Thien, C. B., Bowtell, D. D. & Langdon, W. Y. Perturbed regulation of ZAP-70 and sustained tyrosine phosphorylation of LAT and SLP76 in c-Cbl-deficient thymocytes. J. Immunol.162, 7133–7139 (1999). CASPubMed Google Scholar
Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell102, 533–539 (2000). CASPubMed Google Scholar
Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature403, 211–216 (2000).References68and69describe thatCbl-b−/−mice develop spontaneous autoimmunity after 6 months of age characterized by autoantibody production and generalized lymphocytic infiltration into multiple tissues. CASPubMed Google Scholar
Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature403, 216–220 (2000). CASPubMed Google Scholar
Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem.276, 4872–4878 (2001). CASPubMed Google Scholar
Machesky, L. M. Putting on the brakes: a negative regulatory function for Ena/VASP proteins in cell migration. Cell101, 685–688 (2000). CASPubMed Google Scholar
Gertler, F. B., Doctor, J. S. & Hoffmann, F. M. Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science248, 857–860 (1990). CASPubMed Google Scholar
Halbrugge, M. & Walter, U. Analysis, purification and properties of a 50,000-dalton membrane-associated phosphoprotein from human platelets. J. Chromatogr.521, 335–343 (1990). CASPubMed Google Scholar
Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell87, 227–239 (1996). CASPubMed Google Scholar
Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the ENA/VASP family. EMBO J.16, 5433–5444 (1997). CASPubMedPubMed Central Google Scholar
Carl, U. D. et al. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol.9, 715–718 (1999). CASPubMed Google Scholar
Huttelmaier, S. et al. Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett.451, 68–74 (1999). CASPubMed Google Scholar
Bachmann, C., Fischer, L., Walter, U. & Reinhard, M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem.274, 23549–23557 (1999). CASPubMed Google Scholar
Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J.14, 1314–1321 (1995). CASPubMedPubMed Central Google Scholar
Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol.144, 1245–1258 (1999). CASPubMedPubMed Central Google Scholar
Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature401, 613–616 (1999). CASPubMed Google Scholar
Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol.1, 321–322 (1999). CASPubMed Google Scholar
Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell101, 703–715 (2000). CASPubMed Google Scholar
Bear, J. E. et al. Negative regulation of fibroblast motility by ENA/VASP proteins. Cell101, 717–728 (2000). CASPubMed Google Scholar
Wu, J. Y. et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature410, 948–952 (2001). CASPubMedPubMed Central Google Scholar
Musci, M. A. et al. Molecular cloning of SLAP130, an SLP76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J. Biol. Chem.272, 11674–11677 (1997). CASPubMed Google Scholar
da Silva, A. J. et al. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc. Natl Acad. Sci. USA94, 7493–7498 (1997). CASPubMedPubMed Central Google Scholar
Krause, M. et al. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), ENA/vasodilator-stimulated phosphoprotein (VASP) proteins and the ARP2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol.149, 181–194 (2000). CASPubMedPubMed Central Google Scholar
Obergfell, A. et al. The molecular adapter SLP-76 relays signals from platelet integrin αIIbβ3 to the actin cytoskeleton. J. Biol. Chem.276, 5916–5923 (2001). CASPubMed Google Scholar
Fedorov, A. A., Fedorov, E., Gertler, F. & Almo, S. C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nature Struct. Biol.6, 661–665 (1999). CASPubMed Google Scholar
Prehoda, K. E., Lee, D. J. & Lim, W. A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell97, 471–480 (1999). CASPubMed Google Scholar
Pivniouk, V. I. et al. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J. Clin. Invest.103, 1737–1743 (1999). CASPubMedPubMed Central Google Scholar
Clements, J. L. et al. Fetal hemorrhage and platelet dysfunction in Slp-76-deficient mice. J. Clin. Invest.103, 19–25 (1999). CASPubMedPubMed Central Google Scholar
Saitoh, S. et al. LAT is essential for FcɛRI-mediated mast cell activation. Immunity12, 525–535 (2000). CASPubMed Google Scholar
Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in Blink/Slp-65-deficient mice. Int. Immunol.12, 397–404 (2000). CASPubMed Google Scholar
Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science286, 1949–1954 (1999). CASPubMed Google Scholar
Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity11, 547–554 (1999). CASPubMed Google Scholar
Peterson E. J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science293, 2263–2265 (2001). CASPubMed Google Scholar
Griffiths, E. K. et al. Regulation of T cell activation and intregrin adhesion adapter Fyb/Slap. Science293, 2260–2263 (2001). CASPubMed Google Scholar