Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart (original) (raw)

Nature volume 367, pages 453–455 (1994)Cite this article

Abstract

INHERITED rickettsial symbionts of the genus Wolbachia occur commonly in arthropods and have been implicated in the expression of parthenogenesis1,2, feminization2,3 and cytoplasmic incompatibility phenomena in their respective hosts4–7. Here we use purified Wolbachia from the Asian tiger mosquito, Aedes albopictus, to replace the natural infection of Drosophila simulans by means of embryonic microinjection techniques. The transferred Wolbachia infection behaves like a natural Drosophila infection with regard to its inheritance, cytoskeleton interactions and ability to induce incompatibility when crossed with uninfected flies. The transinfected flies are bidirectionally incompatible with all other naturally infected strains of Drosophila simulans, however, and as such represent a unique crossing type. The successful transfer of this symbiont between distantly related hosts suggests that it may be possible to introduce this agent experimentally into arthropod species of medical and agricultural importance in order to manipulate natural populations genetically.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Stouthamer, R., Breeuwer, J. A. J., Luck, R. F. & Werren, J. H. Nature 361, 66–68 (1993).
    Article CAS ADS Google Scholar
  2. Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Proc. R. Soc. Land. B25O, 91–98 (1992).
    ADS Google Scholar
  3. Rigaud, T. & Juchault, P. Genetics 133, 247–252 (1993).
    CAS PubMed PubMed Central Google Scholar
  4. Yen, J. H. & Barr, A. R. Nature 232, 657–658 (1971).
    Article CAS ADS Google Scholar
  5. Rousset, F., Vautrin, D. & Solignac, M. Proc. R. Soc. Land. B247, 163–168 (1992).
    Article CAS ADS Google Scholar
  6. Breeuwer, J. A. J. et al. Insect molec. Biol. 1, 25–36 (1992).
    Article CAS Google Scholar
  7. O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L. & Robertson, H. M. Proc. natn. Acad. Sci. U.S.A. 89, 2699–2702 (1992).
    Article CAS ADS Google Scholar
  8. Breeuwer, J. A. J. & Werren, J. H. Nature 346, 558–560 (1990).
    Article CAS ADS Google Scholar
  9. Ryan, S. L. & Saul, G. B. Molec. gen. Genet. 103, 29–36 (1968).
    Article CAS Google Scholar
  10. Jost, E. Theor. appl. Genet. 40, 251–256 (1970).
    Article CAS Google Scholar
  11. O'Neill, S. L. & Karr, T. L. Nature 348, 178–180 (1990).
    Article CAS ADS Google Scholar
  12. Hoffmann, A. A., Turelli, M. & Simmons, G. M. Evolution 40, 692–701 (1986).
    Article Google Scholar
  13. Wade, M. J. & Stevens, L. Science 227, 527–528 (1985).
    Article CAS ADS Google Scholar
  14. Hsiao, C. & Hsiao, T. H. J. invert. Path. 45, 244–246 (1985)
    Article Google Scholar
  15. Laven, H. Cold Spring Harb. Symp. quant. Biol. 24, 166–173 (1959)
    Article CAS Google Scholar
  16. Breeuwer, J. A. J. & Werren, J. H. Genetics 135, 565–574 (1993).
    CAS PubMed PubMed Central Google Scholar
  17. Montchamp-Moreau, C., Ferveur, J. & Jacques, M. Genetics 129, 399–407 (1991).
    CAS PubMed PubMed Central Google Scholar
  18. Nigro, L. Heredity 66, 41–45 (1991).
    Article Google Scholar
  19. Boyle, L., O'Neill, S. L., Robertson, H. M. & Karr, T. L. Science 260, 1796–1799 (1993).
    Article CAS ADS Google Scholar
  20. Holton, T. A. & Graham, M. W. Nucleic Acids Res. 19, 1156 (1991).
    Article CAS Google Scholar
  21. Turelli, M. & Hoffmann, A. A. Nature 353, 440–442 (1991).
    Article CAS ADS Google Scholar
  22. Curtis, C. F. Nature 357, 450 (1992).
    Article CAS ADS Google Scholar
  23. Beard, C. B., O'Neill, S. L., Tesh, R. B., Richards, F. F. & Aksoy, S. Parasit. Today 9, 179–183 (1993).
    Article CAS Google Scholar
  24. Simon, C., Franke, A. & Martin, A. in Molecular Techniques in Taxonomy (eds Hewitt, G. M., Johnston, A. W. B. & Young, J. P. W.) 329–355 (Springer, Berlin, 1991).
    Book Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Epidemiology and Public Health, Yale University School of Medicine, PO Box 3333, New Haven, Connecticut, 06510, USA
    Henk R. Braig, Hilda Guzman, Robert B. Tesh & Scott L. O'Neill

Authors

  1. Henk R. Braig
    You can also search for this author inPubMed Google Scholar
  2. Hilda Guzman
    You can also search for this author inPubMed Google Scholar
  3. Robert B. Tesh
    You can also search for this author inPubMed Google Scholar
  4. Scott L. O'Neill
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Braig, H., Guzman, H., Tesh, R. et al. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart.Nature 367, 453–455 (1994). https://doi.org/10.1038/367453a0

Download citation

This article is cited by