RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone (original) (raw)

References

  1. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969).
    Google Scholar
  2. Cowan, W. M., Südhof, T. C. & Stevens, C. F. (eds) Synapses (Johns Hopkins Univ. Press, Baltimore, 2001).
    Google Scholar
  3. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).
    Article CAS Google Scholar
  4. Wang, Y., Okamoto, M., Schmitz, F., Hofman, K. & Südhof, T. C. RIM is a putative Rab3A-effector in regulating synaptic vesicle fusion. Nature 388, 593–598 (1997).
    Article ADS CAS Google Scholar
  5. Wang, Y., Sugita, S. & Südhof, T. C. The RIM/NIM family of neuronal C2-domain proteins: interactions with Rab3 and a new class of SH3-domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).
    Article CAS Google Scholar
  6. Brose, N., Hofmann, K., Hata, Y. & Südhof, T. C. Mammalian homologues of C. elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25273–25280 (1995).
    Article CAS Google Scholar
  7. Serra-Pages, C., Medley, Q. G., Tang, M., Hart, A. & Streuli, M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J. Biol. Chem. 273, 15611–15620 (1998).
    Article CAS Google Scholar
  8. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).
    ADS CAS Google Scholar
  9. Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. & McMahan, U. J. The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479–484 (2001).
    Article ADS CAS Google Scholar
  10. Geppert, M., Goda, Y., Stevens, C. F. & Südhof, T. C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997).
    Article ADS CAS Google Scholar
  11. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neurosci. 2, 959–964 (1999).
    Article CAS Google Scholar
  12. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nature Neurosci. 2, 965–971 (1999).
    Article CAS Google Scholar
  13. Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).
    Article ADS CAS Google Scholar
  14. Coppola, T. et al. Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J. 18, 5885–5891 (1999).
    Article CAS Google Scholar
  15. Sun, L., Bittner, M. A. & Holz, R. W. Rab3A-binding and secretion-enhancing domains in Rim1 are separate and unique: Studies in adrenal chromaffin cells. J. Biol. Chem. 276, 12911–12917 (2001).
    Article CAS Google Scholar
  16. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biol. 2, 805–811 (2000).
    CAS PubMed Central Google Scholar
  17. Coppola, T. et al. Direct interaction of the rab3 effector rim with Ca2+ channels, snap-25, and synaptotagmin. J. Biol. Chem. 276, 32756–32762 (2001).
    Article CAS Google Scholar
  18. Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).
    Article CAS Google Scholar
  19. Wang, X., Hu, B., Zimmermann, B. & Kilimann, M. W. Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants partially related through N-terminal α-helix motifs. J. Biol. Chem. 276, 32480–32488 (2001).
    Article CAS Google Scholar
  20. Li, C. et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on Rab3A/3C. Neuron 13, 885–898 (1994).
    Article CAS Google Scholar
  21. Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).
    Article CAS Google Scholar
  22. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).
    Article CAS Google Scholar
  23. Castillo, P. E., Schoch, S., Schmitz, F., Südhof, T. C. & Malenka, R. C. RIM1α is required for presynaptic long-term potentiation. Nature 415, 327–330 (2002).
    Article ADS CAS Google Scholar
  24. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).
    Article ADS CAS Google Scholar
  25. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).
    Article ADS CAS Google Scholar
  26. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).
    Article ADS CAS Google Scholar
  27. Schlüter, O. M. et al. Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J. Neurosci. 19, 5834–5846 (1999).
    Article Google Scholar
  28. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).
    Article ADS CAS Google Scholar

Download references