DNMT1 and DNMT3b cooperate to silence genes in human cancer cells (original) (raw)
References
Vogelstein, B. & Kinzler, K. W. The Genetic Basis of Human Cancer (McGraw-Hill Health Professions Division, New York, 1998). Google Scholar
Siegfried, Z. & Cedar, H. DNA methylation: a molecular lock. Curr. Biol.7, R305–R307 (1997). ArticleCAS Google Scholar
Bird, A. P. & Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell99, 451–454 (1999). ArticleCAS Google Scholar
Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions. Carcinogenesis21, 461–467 (2000). ArticleCAS Google Scholar
Tycko, B. Epigenetic gene silencing in cancer. J. Clin. Invest.105, 401–407 (2000). ArticleCAS Google Scholar
Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16, 168–174 (2000). ArticleCAS Google Scholar
Eads, C. A. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res.59, 2302–2306 (1999). CASPubMed Google Scholar
Schmutte, C., Yang, A. S., Nguyen, T. T., Beart, R. W. & Jones, P. A. Mechanisms for the involvement of DNA methylation in colon carcinogenesis. Cancer Res.56, 2375–2381 (1996). CASPubMed Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCAS Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCAS Google Scholar
Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature404, 1003–1007 (2000). ArticleADSCAS Google Scholar
Bestor, T. H. The DNA methyltransferases of mammals. Hum. Mol. Genet.9, 2395–2402 (2000). ArticleCAS Google Scholar
Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R. & Ehrlich, M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res.8, 4763–4776 (1980). ArticleCAS Google Scholar
Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48, 1159–1161 (1988). CASPubMed Google Scholar
Bachman, K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res.59, 798–802 (1999). CASPubMed Google Scholar
Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93, 9821–9826 (1996). ArticleADSCAS Google Scholar
Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature362, 747–749 (1993). ArticleADSCAS Google Scholar
Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nature Genet.5, 408–412 (1993). ArticleCAS Google Scholar
Steenman, M. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nature Genet.7, 433–439 (1994). ArticleCAS Google Scholar
Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R. & Feinberg, A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Med.4, 1276–1280. (1998). ArticleCAS Google Scholar
Uejima, H., Lee, M. P., Cui, H. & Feinberg, A. P. Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nature Genet.25, 375–376 (2000). ArticleCAS Google Scholar
Myohanen, S. K., Baylin, S. B. & Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res.58, 591–593 (1998). CASPubMed Google Scholar
Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet.19, 219–220 (1998). ArticleCAS Google Scholar
Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet.23, 363–366 (1999). ArticleCAS Google Scholar
Santi, D. V., Garrett, C. E. & Barr, P. J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell33, 9–10 (1983). ArticleCAS Google Scholar
Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA91, 11797–11801 (1994). ArticleADSCAS Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet.27, 31–39 (2001). ArticleCAS Google Scholar
Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature401, 616–620 (1999). ArticleADSCAS Google Scholar
Vertino, P. M., Yen, R. W., Gao, J. & Baylin, S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol. Cell Biol.16, 4555–4565 (1996). ArticleCAS Google Scholar