DNMT1 and DNMT3b cooperate to silence genes in human cancer cells (original) (raw)

References

  1. Vogelstein, B. & Kinzler, K. W. The Genetic Basis of Human Cancer (McGraw-Hill Health Professions Division, New York, 1998).
    Google Scholar
  2. Siegfried, Z. & Cedar, H. DNA methylation: a molecular lock. Curr. Biol. 7, R305–R307 (1997).
    Article CAS Google Scholar
  3. Bird, A. P. & Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451–454 (1999).
    Article CAS Google Scholar
  4. Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467 (2000).
    Article CAS Google Scholar
  5. Tycko, B. Epigenetic gene silencing in cancer. J. Clin. Invest. 105, 401–407 (2000).
    Article CAS Google Scholar
  6. Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).
    Article CAS Google Scholar
  7. Ponder, B. A. Cancer genetics. Nature 411, 336–341 (2001).
    Article ADS CAS Google Scholar
  8. Eads, C. A. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59, 2302–2306 (1999).
    CAS PubMed Google Scholar
  9. Schmutte, C., Yang, A. S., Nguyen, T. T., Beart, R. W. & Jones, P. A. Mechanisms for the involvement of DNA methylation in colon carcinogenesis. Cancer Res. 56, 2375–2381 (1996).
    CAS PubMed Google Scholar
  10. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).
    Article CAS Google Scholar
  11. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).
    Article CAS Google Scholar
  12. Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003–1007 (2000).
    Article ADS CAS Google Scholar
  13. Bestor, T. H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402 (2000).
    Article CAS Google Scholar
  14. Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R. & Ehrlich, M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8, 4763–4776 (1980).
    Article CAS Google Scholar
  15. Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161 (1988).
    CAS PubMed Google Scholar
  16. Bachman, K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 59, 798–802 (1999).
    CAS PubMed Google Scholar
  17. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).
    Article ADS CAS Google Scholar
  18. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).
    Article ADS CAS Google Scholar
  19. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nature Genet. 5, 408–412 (1993).
    Article CAS Google Scholar
  20. Steenman, M. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nature Genet. 7, 433–439 (1994).
    Article CAS Google Scholar
  21. Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R. & Feinberg, A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Med. 4, 1276–1280. (1998).
    Article CAS Google Scholar
  22. Uejima, H., Lee, M. P., Cui, H. & Feinberg, A. P. Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nature Genet. 25, 375–376 (2000).
    Article CAS Google Scholar
  23. Myohanen, S. K., Baylin, S. B. & Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58, 591–593 (1998).
    CAS PubMed Google Scholar
  24. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219–220 (1998).
    Article CAS Google Scholar
  25. Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet. 23, 363–366 (1999).
    Article CAS Google Scholar
  26. Santi, D. V., Garrett, C. E. & Barr, P. J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9–10 (1983).
    Article CAS Google Scholar
  27. Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797–11801 (1994).
    Article ADS CAS Google Scholar
  28. Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).
    Article CAS Google Scholar
  29. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).
    Article ADS CAS Google Scholar
  30. Vertino, P. M., Yen, R. W., Gao, J. & Baylin, S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol. Cell Biol. 16, 4555–4565 (1996).
    Article CAS Google Scholar

Download references