Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour (original) (raw)
Surani, M.A., Reik, W. & Allen, N.D. Transgenes as molecular probes for genomlo imprinting. Trends Genet.4, 59–62 (1988). ArticleCASPubMed Google Scholar
Swain, J.L., Stewart, T.A. & Leder, P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell50, 719–727 (1987). ArticleCASPubMed Google Scholar
Bartolomei, M. The search for imprinted genes. Nature Genet.6, 4–5 (1994). Article Google Scholar
DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor-2 gene. Cell64, 849–859 (1991). ArticleCASPubMed Google Scholar
Yee, D. et al. Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res.48, 6691–6696 (1988). CASPubMed Google Scholar
Lambert, S. et al. TumorIGF-II content in a patient with acolon adenocarcinoma correlates with abnormal expression of the gene. Int. J. Cancer48, 826–830 (1991). ArticleCASPubMed Google Scholar
Shapiro, E.T. et al. Tumor hypoglycemla: relationship to high molecular weight insulin-like growth factor-II. J. clin. Invest.85, 1672–1679 (1990). ArticleCASPubMedPubMed Central Google Scholar
Bartolomei, M., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse h19 gene. Nature351, 153–155 (1991). ArticleCASPubMed Google Scholar
Glaser, T., Housman, D., Lewis, W.H., Gerhard, D. & Jones, C. A fine-structure deletion map of human chromosome 11p: analysis of J1 series hybrids. Som. Cell molec. Genet15, 477–501 (1989). ArticleCAS Google Scholar
Henry, I. et al. Uniparental paternal disomy In a genetic cancer-predisposing syndrome. Nature351, 665–667 (1991). ArticleCASPubMed Google Scholar
Rainier, S. et al. Relaxation of imprinted genes In human cancer. Nature362, 747–749 (1993). ArticleCASPubMed Google Scholar
Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting Implicated in Wilms' tumour. Nature362, 749–751 (1993). ArticleCASPubMed Google Scholar
Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet.4, 98–101 (1993). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Imprinting of human H19: allele-specific CpG Methylation, loss of the active allele in Wilrns Tumor, and potential for somatic allele switching. Am. J. hum. Genet53, 113–124 (1993). CASPubMedPubMed Central Google Scholar
Rachmilewltz, J. et al. Parental imprlnting of the human H19 gene. FEBS Lett.309, 25–28 (1992). Article Google Scholar
Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature365, 764–767 (1993). ArticleCASPubMed Google Scholar
Weksberg, R., Shen, D.R., Fei, Y.L., Song, Q.L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting In Beckwith-Wiedemann syndrome. Nature Genet.5, 143–150 (1993). ArticleCASPubMed Google Scholar
Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nature Genet.5, 408–412 (1993). ArticleCASPubMed Google Scholar
Beckwith, J.B., Kiviat, N.B. & Bonadlo, J.F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor. Embryol. Devel. 1–36 (1990). ArticleCASPubMed Google Scholar
Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. hum. Genet.40, 413–420 (1987). CASPubMedPubMed Central Google Scholar
Mannens, M. et al. Molecular nature of genetic changes resulting in loss of heterozygoslty of chromosome 11 in Wilms' tumours. Hum. Genet.81, 41–48 (1988). ArticleCASPubMed Google Scholar
Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse h19 gene. Nature362, 751–755 (1993). ArticleCASPubMed Google Scholar
Bartolomel, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse h19 gene. Genes Devel.7, 1663–1673 (1993). Article Google Scholar
Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). ArticleCASPubMed Google Scholar
Goelz, S.E., Vogelstein, B., Hamilton, S.R. & Feinberg, A.P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science228, 187–190 (1985). ArticleCASPubMed Google Scholar
Baylin, S.B. et al. Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood70, 412–417 (1987). CASPubMed Google Scholar
Henry, I. et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwlth syndrome: a post-fertilization event. Bur. J. hum. Genet1, 19–29 (1993). ArticleCAS Google Scholar
Koi, M. et al. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from human chromosome 11. Science260, 361–364 (1993). ArticleCASPubMed Google Scholar
Feinberg, A. Genomic imprinting and gene activation in cancer. Nature Genet.4, 110–113 (1993). ArticleCASPubMed Google Scholar
Tatof, K.D. & Henikoff, S. Trans-sensing effects from Drosophila to humans. Cell65, 201–203 (1991). Article Google Scholar
Cattanach, B.M. & Beechey, C.V. Autosomal and X-chromosome imprinting. Development (Suppl.) 63–72 (1990).
Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet.7, 45–49 (1991). ArticleCASPubMed Google Scholar
Hochberg, A., DeGroot, N., Rachmllewitz, J. & Gonik, B. Genetic imprinting in human evolution: the decisive role of maternal lineage. Med. Hypotheses41, 355–357 (1993). ArticleCASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DMA methylation in genomic imprinting. Nature366, 362–365 (1993). ArticleCASPubMed Google Scholar
Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem.132, 6–13 (1983). ArticleCASPubMed Google Scholar
Feder, J. et al. A systematic approach for detecting high-frequency restriction fragment length polymorphisms using large genomic probes. Am. J. hum. Genet.37, 635–649 (1985). CASPubMedPubMed Central Google Scholar
Nelkin, B.D. et al. Structure and expression of a gene encoding human calcitonin and calcitonin gene related peptide. Biochem. Biophys. Res. Commun.123, 648–655 (1984). ArticleCASPubMed Google Scholar
Leppert, M. et al. A partial primary genetic linkage map of chromosome 11. Cytogenet. Cell Genet.46, 648–1967 (1987). Google Scholar
Phillips, J.A. et al. Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: Hind III polymorphisms in gamma-globin genes extend test applicability. Proc. natn. Acad. Sci. U.S.A.77, 2853–2856 (1980). ArticleCAS Google Scholar
Tanigami, A. et al. Mapping of 262 DMA markers into 24 intervals on human chromosome 11. Am. J. hum. Genet.50, 56–64 (1992). CASPubMedPubMed Central Google Scholar
Bell, G.I., Karam, J.H. & Rutter, W.J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. natn. Acad. Sci. U.S.A.78, 5759–5763 (1981). ArticleCAS Google Scholar
Dull, T.J., Gray, A., Hayflick, J.S. & Ullrich, A. Insulin-like growth factor II precursor gene organization In relation to insulin gene family. Nature310, 777–781 (1984). ArticleCASPubMed Google Scholar
Xiang, K., Cox, N.J. & Bell, G.I. Apa I and Sst I RFLP's at the insulin-like growth factor II (IGF2) locus on chromosome 11. Nucl. Acids Res.16, 3599 (1988). ArticleCASPubMedPubMed Central Google Scholar
Brannan, C.I., Dees, E.G., Ingram, R.S. & Tilghman, S.M. The product of the h19 gene may function as an RNA. Molec. cell. Biol.10, 28–36 (1990). ArticleCASPubMedPubMed Central Google Scholar
Redeker, E., Van Moorsel, C.J., Feinberg, A.P. & Mannens, M.A. Taq I and Rsa I polymorphisms in the H19 gene (D11S813E). Hum. molec. Genet.2, 823 (1993). ArticleCASPubMed Google Scholar
Shin, C. & Weinberg, R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell29, 161–169 (1982). Article Google Scholar
Feinberg, A.P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun.11, 47–54 (1983). Article Google Scholar
Saiki, R.K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science230, 1350–1354 (1985). ArticleCASPubMed Google Scholar
Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the Insulin like growth factor II gene (lGF2). Nucl. Acids Res.19, 6967 (1991). ArticleCASPubMedPubMed Central Google Scholar
Rainier, S., Dobry, C.J. & Feinberg, A.P. Dinucleotide repeat polymorphism In the human insulin-like growth factor II (lGF2) gene on chromosome 11. Hum. molec. Genet.3, 386 (1994). ArticleCAS Google Scholar
Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet.1, 40–44 (1992). ArticleCASPubMed Google Scholar
Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A.81, 1991–1995 (1984). ArticleCAS Google Scholar