Genealogies of mouse inbred strains (original) (raw)

References

  1. Keeler, C.E. The Laboratory Mouse, its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).
  2. Ginsburg, B.E. Muroid roots of behavior genetic research: a retrospective. in Techniques for the Genetic Analysis of Brain and Behavior (eds Goldowitz, D., Wahlsten, D. & Wimer, R.E.) 3–14(Elsevier, Amsterdam, 1992).
    Google Scholar
  3. Morse, H.C. Origins of Inbred Mice (Academic, New York, 1978).
  4. Silver, L.M. Mouse Genetics (Oxford University Press, Oxford, 1995).
  5. Staats, J. Nomenclature. in Biology of the Laboratory Mouse (ed. Green, E.L.) 45–50 (McGraw-Hill, New York, 1966).
  6. Klein, J. Biology of the mouse histocompatibility-2 complex. in Principles of Immunogenetics Applied to a Single System (Springer-Verlag, Berlin, 1975).
  7. Davisson, M.T. Rules for nomenclature of inbred strains. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1532–1536 (Oxford University Press, Oxford, 1996).
    Google Scholar
  8. Festing, M.F.W. Inbred strains of mice: a vital resource for biomedical research. Mouse Genome 95, 845–855 (1997).
    Google Scholar
  9. Staats, J. The laboratory mouse. in Biology of the Laboratory Mouse (ed. Green, E.L.) 1–9 (McGraw-Hill, New York, 1966).
    Google Scholar
  10. Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM); a novel murine model of senescence. Exp. Gerontol. 32, 105– 109 (1997).
    Article CAS Google Scholar
  11. Peirce, J.L., Derr, R., Shendure, J., Kolata, T. & Silver, L.M. A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mamm. Genome 9, 942–948 (1998).
    Article CAS Google Scholar
  12. Taketo, M. et al. FVB/N: an inbred mouse strain preferable for transgenic analyses . Proc. Natl Acad. Sci. USA 88, 2065– 2069 (1991).
    Article CAS Google Scholar
  13. Crawley, J.N. et al.Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132, 107–124 (1997).
    Article CAS Google Scholar
  14. Martin, J.E. & Fisher, E.M.C. Phenotypic analysis—making the most of your mouse. Trends Genet. 13, 254–256 (1997).
    Article CAS Google Scholar
  15. Bonhomme, F. & Guenet, J.L. The laboratory mouse and its wild relatives. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1577– 1596 (Oxford University Press, Oxford, 1996).
    Google Scholar
  16. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18, 19– 24 (1998).
    Article CAS Google Scholar
  17. Todd, J.A. From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 21, 164–174 ( 1999).
    Article CAS Google Scholar
  18. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice . Nature Genet. 21, 305– 308 (1999).
    Article CAS Google Scholar
  19. Potter, M. & Klein, J. in Inbred and Genetically Defined Strains of Laboratory Animals. Vol. 1, Mouse and Rat (eds Altman, P.L. & Katz, D.D.) 16–17 (Federation of American Societies for Experimental Biology, Bethesda, 1979).
    Google Scholar
  20. Festing, M.F.W. Inbred Strains in Biomedical Research (Macmillan, London, 1979).
  21. Festing, M.F.W. & Roderick, T.H. Correlation between genetic distances based on single loci and on skeletal morphology in inbred mice. Genet. Res. 53, 45– 55 (1989).
    Article CAS Google Scholar
  22. Hilgers, J. et al. Esterase alleles of inbred mouse strains maintained in the Netherlands . Genet. Res. 51, 29–40 (1988).
    Article CAS Google Scholar
  23. Taylor, B.A. Genetic relationship between inbred strains of mice. J. Hered. 63, 83–86 ( 1972).
    Article CAS Google Scholar
  24. Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science 254, 554– 558 (1991).
    Article CAS Google Scholar
  25. Fowlis, G.A., Adelman, S., Knight, A.M. & Simpson, E. PCR-analyzed microsatellites of the mouse genome—additional polymorphisms among ten inbred mouse strains. Mamm. Genome 3, 192–196 (1992).
    Article CAS Google Scholar
  26. Routman, E.J. & Cheverud, J.M. Polymorphism for PCR-analyzed microsatellites between the inbred mouse strains LG and SM. Mamm. Genome 6, 401–404 ( 1995).
    Article CAS Google Scholar
  27. Matouk, C., Gosselin, D., Malo, D., Skamene, E. & Radzioch, D. PCR-analyzed microsatellites for the inbred mouse strain 129/Sv, the strain most commonly used in gene knockout technology. Mamm. Genome 7, 603–605 (1996).
    Article CAS Google Scholar
  28. Slingsby, J.H., Hogarth, M.B., Simpson, E., Walport, M.J. & Morley, B.J. New microsatellite polymorphisms identified between C57BL/6, C57BL/10, and C57BL/KsJ inbred mouse strains. Immunogenetics 43, 72–75 (1996).
    CAS PubMed Google Scholar
  29. Neuhaus, I.M., Sommardahl, C.S., Johnson, D.K. & Beier, D.R. Microsatellite DNA variants between the FVB/N and C3HeB/FeJLe and C57BL/6J mouse strains. Mamm. Genome 8, 506– 509 (1997).
    Article CAS Google Scholar
  30. Panoutsakopoulou, V., et al. Microsatellite typing of CXB recombinant inbred and parental mouse strains. Mamm. Genome 8, 357– 361 (1997).
    Article CAS Google Scholar
  31. Matin, A. et al. Simple sequence length polymorphisms (SSLPs) that distinguish MOLF/Ei and 129/Sv inbred strains of laboratory mice. Mamm. Genome 9, 668–670 (1998).
    Article CAS Google Scholar
  32. Maronpot, R.R., Witschi, H.P., Smith, L.H. & McCoy, J.L. Recent experience with the strain A mouse pulmonary adenoma bioassay. Environ. Sci. Res. 27, 341–349 (1983).
    CAS Google Scholar
  33. Festing, M.F.W. A case for using inbred strains of laboratory animals in evaluating the safety of drugs. Food Cosmet. Toxicol. 13, 369– 375 (1975).
    Article CAS Google Scholar
  34. Le Voyer, T.E. & Hunter, K.W. Microsatellite DNA variants among the FVB/NJ, C58/J and I/LnJ mouse strains. Mamm. Genome 10, 542–543 (1999).
    Article CAS Google Scholar
  35. McClive, P.J., Huang, D. & Morahan, G. C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39, 286–288 (1994).
    Article CAS Google Scholar
  36. Atchley, W.R. & Fitch, W. Genetic affinities of inbred mouse strains of uncertain origin. Mol. Biol. Evol. 10, 1150–1169 (1993).
    CAS PubMed Google Scholar
  37. Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet. 16, 19 –27 (1997).
    Article CAS Google Scholar
  38. Carlson, G.A. et al.Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol. Cell. Biol. 8, 5528–5540 (1988).
    Article CAS Google Scholar
  39. Fitch, W.M. & Atchley, W.R. Evolution in inbred strains of mice appears to be rapid. Science 228, 1169 –1175 (1985).
    Article CAS Google Scholar
  40. Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science 254, 554– 558 (1991).
    Article CAS Google Scholar
  41. Cui, S., Chesson, C. & Hope, R. Genetic variation within and between strains of outbred Swiss mice. Lab. Anim. 27, 116– 123 (1993).
    Article CAS Google Scholar
  42. Festing, M.F.W. Origins and characteristics of inbred strains of mice. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1537–1576 (Oxford University Press, Oxford, 1996).
    Google Scholar
  43. Russell, E.S. A history of mouse genetics. Annu. Rev. Genet. 19, 1–28 (1985).
    Article CAS Google Scholar
  44. Bonhomme, F., Guenet, J.L., Dod, B., Moriwaki, K. & Bulfield, G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. J. Linnean Soc. 30, 51–58 (1987).
    Article Google Scholar
  45. Blake, J.A., Richardson, J.E., Davisson, M.T. & Eppig, J.T. The Mouse Genome Database (MGD): genetic and genomic information about the laboratory mouse. Nucleic Acids Res. 27, 95–98 (1999).
    Article CAS Google Scholar

Download references