Genealogies of mouse inbred strains (original) (raw)
References
Keeler, C.E. The Laboratory Mouse, its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).
Ginsburg, B.E. Muroid roots of behavior genetic research: a retrospective. in Techniques for the Genetic Analysis of Brain and Behavior (eds Goldowitz, D., Wahlsten, D. & Wimer, R.E.) 3–14(Elsevier, Amsterdam, 1992). Google Scholar
Morse, H.C. Origins of Inbred Mice (Academic, New York, 1978).
Silver, L.M. Mouse Genetics (Oxford University Press, Oxford, 1995).
Staats, J. Nomenclature. in Biology of the Laboratory Mouse (ed. Green, E.L.) 45–50 (McGraw-Hill, New York, 1966).
Klein, J. Biology of the mouse histocompatibility-2 complex. in Principles of Immunogenetics Applied to a Single System (Springer-Verlag, Berlin, 1975).
Davisson, M.T. Rules for nomenclature of inbred strains. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1532–1536 (Oxford University Press, Oxford, 1996). Google Scholar
Festing, M.F.W. Inbred strains of mice: a vital resource for biomedical research. Mouse Genome95, 845–855 (1997). Google Scholar
Staats, J. The laboratory mouse. in Biology of the Laboratory Mouse (ed. Green, E.L.) 1–9 (McGraw-Hill, New York, 1966). Google Scholar
Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM); a novel murine model of senescence. Exp. Gerontol.32, 105– 109 (1997). ArticleCAS Google Scholar
Peirce, J.L., Derr, R., Shendure, J., Kolata, T. & Silver, L.M. A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mamm. Genome9, 942–948 (1998). ArticleCAS Google Scholar
Taketo, M. et al. FVB/N: an inbred mouse strain preferable for transgenic analyses . Proc. Natl Acad. Sci. USA88, 2065– 2069 (1991). ArticleCAS Google Scholar
Crawley, J.N. et al.Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology132, 107–124 (1997). ArticleCAS Google Scholar
Martin, J.E. & Fisher, E.M.C. Phenotypic analysis—making the most of your mouse. Trends Genet.13, 254–256 (1997). ArticleCAS Google Scholar
Bonhomme, F. & Guenet, J.L. The laboratory mouse and its wild relatives. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1577– 1596 (Oxford University Press, Oxford, 1996). Google Scholar
Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet.18, 19– 24 (1998). ArticleCAS Google Scholar
Todd, J.A. From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays21, 164–174 ( 1999). ArticleCAS Google Scholar
Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice . Nature Genet.21, 305– 308 (1999). ArticleCAS Google Scholar
Potter, M. & Klein, J. in Inbred and Genetically Defined Strains of Laboratory Animals. Vol. 1, Mouse and Rat (eds Altman, P.L. & Katz, D.D.) 16–17 (Federation of American Societies for Experimental Biology, Bethesda, 1979). Google Scholar
Festing, M.F.W. Inbred Strains in Biomedical Research (Macmillan, London, 1979).
Festing, M.F.W. & Roderick, T.H. Correlation between genetic distances based on single loci and on skeletal morphology in inbred mice. Genet. Res.53, 45– 55 (1989). ArticleCAS Google Scholar
Hilgers, J. et al. Esterase alleles of inbred mouse strains maintained in the Netherlands . Genet. Res.51, 29–40 (1988). ArticleCAS Google Scholar
Taylor, B.A. Genetic relationship between inbred strains of mice. J. Hered.63, 83–86 ( 1972). ArticleCAS Google Scholar
Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science254, 554– 558 (1991). ArticleCAS Google Scholar
Fowlis, G.A., Adelman, S., Knight, A.M. & Simpson, E. PCR-analyzed microsatellites of the mouse genome—additional polymorphisms among ten inbred mouse strains. Mamm. Genome3, 192–196 (1992). ArticleCAS Google Scholar
Routman, E.J. & Cheverud, J.M. Polymorphism for PCR-analyzed microsatellites between the inbred mouse strains LG and SM. Mamm. Genome6, 401–404 ( 1995). ArticleCAS Google Scholar
Matouk, C., Gosselin, D., Malo, D., Skamene, E. & Radzioch, D. PCR-analyzed microsatellites for the inbred mouse strain 129/Sv, the strain most commonly used in gene knockout technology. Mamm. Genome7, 603–605 (1996). ArticleCAS Google Scholar
Slingsby, J.H., Hogarth, M.B., Simpson, E., Walport, M.J. & Morley, B.J. New microsatellite polymorphisms identified between C57BL/6, C57BL/10, and C57BL/KsJ inbred mouse strains. Immunogenetics43, 72–75 (1996). CASPubMed Google Scholar
Neuhaus, I.M., Sommardahl, C.S., Johnson, D.K. & Beier, D.R. Microsatellite DNA variants between the FVB/N and C3HeB/FeJLe and C57BL/6J mouse strains. Mamm. Genome8, 506– 509 (1997). ArticleCAS Google Scholar
Panoutsakopoulou, V., et al. Microsatellite typing of CXB recombinant inbred and parental mouse strains. Mamm. Genome8, 357– 361 (1997). ArticleCAS Google Scholar
Matin, A. et al. Simple sequence length polymorphisms (SSLPs) that distinguish MOLF/Ei and 129/Sv inbred strains of laboratory mice. Mamm. Genome9, 668–670 (1998). ArticleCAS Google Scholar
Maronpot, R.R., Witschi, H.P., Smith, L.H. & McCoy, J.L. Recent experience with the strain A mouse pulmonary adenoma bioassay. Environ. Sci. Res.27, 341–349 (1983). CAS Google Scholar
Festing, M.F.W. A case for using inbred strains of laboratory animals in evaluating the safety of drugs. Food Cosmet. Toxicol.13, 369– 375 (1975). ArticleCAS Google Scholar
Le Voyer, T.E. & Hunter, K.W. Microsatellite DNA variants among the FVB/NJ, C58/J and I/LnJ mouse strains. Mamm. Genome10, 542–543 (1999). ArticleCAS Google Scholar
McClive, P.J., Huang, D. & Morahan, G. C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics39, 286–288 (1994). ArticleCAS Google Scholar
Atchley, W.R. & Fitch, W. Genetic affinities of inbred mouse strains of uncertain origin. Mol. Biol. Evol.10, 1150–1169 (1993). CASPubMed Google Scholar
Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet.16, 19 –27 (1997). ArticleCAS Google Scholar
Carlson, G.A. et al.Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol. Cell. Biol.8, 5528–5540 (1988). ArticleCAS Google Scholar
Fitch, W.M. & Atchley, W.R. Evolution in inbred strains of mice appears to be rapid. Science228, 1169 –1175 (1985). ArticleCAS Google Scholar
Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science254, 554– 558 (1991). ArticleCAS Google Scholar
Cui, S., Chesson, C. & Hope, R. Genetic variation within and between strains of outbred Swiss mice. Lab. Anim.27, 116– 123 (1993). ArticleCAS Google Scholar
Festing, M.F.W. Origins and characteristics of inbred strains of mice. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1537–1576 (Oxford University Press, Oxford, 1996). Google Scholar
Russell, E.S. A history of mouse genetics. Annu. Rev. Genet.19, 1–28 (1985). ArticleCAS Google Scholar
Bonhomme, F., Guenet, J.L., Dod, B., Moriwaki, K. & Bulfield, G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. J. Linnean Soc.30, 51–58 (1987). Article Google Scholar
Blake, J.A., Richardson, J.E., Davisson, M.T. & Eppig, J.T. The Mouse Genome Database (MGD): genetic and genomic information about the laboratory mouse. Nucleic Acids Res. 27, 95–98 (1999). ArticleCAS Google Scholar