Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells (original) (raw)
Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCAS Google Scholar
Reubinoff, B. et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol.18, 399–404 (2000). ArticleCAS Google Scholar
Shamblott, M.J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA95, 13726–13731 (1998). ArticleCAS Google Scholar
Klug, M.G. et al., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest.98, 216–24 (1996). ArticleCAS Google Scholar
Keller, G. et al. Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood92, 877–87 (1998). CASPubMed Google Scholar
Wobus, A.M. & Boheler, K.R. Embryonic stem cells as developmental model in vitro. Cells Tiss. Org.165, 129–30 (1999). ArticleCAS Google Scholar
Bain, G. et al. Embryonic stem cells express neuronal properties in vitro. Dev. Biol.168, 342–357 (1995). ArticleCAS Google Scholar
Deacon, T. et al. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp. Neurol.149, 28–41 (1998). ArticleCAS Google Scholar
Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science285, 754–756 (1999). ArticleCAS Google Scholar
Okabe, S. et al. Development of neuronal precursor cells and functional potmitotic neurons from embryonic stem cells in vitro. Mech. Dev.59, 89–102 (1996). ArticleCAS Google Scholar
Olanow, C.W., Kordower, J.H. & Freeman, T.B. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci.19, 102–109 (1996). ArticleCAS Google Scholar
Breier, A., et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA94, 2569–2574 (1997). ArticleCAS Google Scholar
Gramm, L.F. Drug therapy: fluoxetine. N. Engl. J. Med.331, 1354 (1994). Article Google Scholar
Volkow, N.D. et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature386, 830–833 (1997). ArticleCAS Google Scholar
Volkow, N.D. et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature386, 827–830 (1997). ArticleCAS Google Scholar
Simeone, A. Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J.17, 6790–6798 (1998). ArticleCAS Google Scholar
Acampora, D. & Simeone, A. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci.22, 116–122 (1999). ArticleCAS Google Scholar
Stoykova, A. & Gruss, P. Roles of Pax genes in developing and adult brain as suggested by expression patterns. J. Neurosci.14, 1395–1412 (1994). ArticleCAS Google Scholar
Rowitch, D.H. & McMahon, A.P. Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech Dev.52, 3–8 (1995). ArticleCAS Google Scholar
Lendahl, U., Zimmerman, L.B. & McKay, R.D.G. CNS stem cells express a new class of intermediate filament proteins. Cell60, 585–595 (1990). ArticleCAS Google Scholar
Frederiksen, K. & McKay, R.D.G. Proliferation and differentiation of rat neuroephitelial precursor cells in vivo. J. Neurosci.8, 1144–1151 (1988). ArticleCAS Google Scholar
Johe, K. et al. Single factors direct the differentiation of stem cells from the fetal and adult nervous system. Genes Dev.10, 3129–3140 (1996). ArticleCAS Google Scholar
Vicario-Abejón, C. et al. Functions of basic-fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron15, 105–114 (1995). Article Google Scholar
Studer, L., Tabar, V. & McKay, R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1, 290–295 (1998). ArticleCAS Google Scholar
Studer, L., Tabar, V. & McKay, R.D.G. Survival of expanded dopaminergic precursors is critical for clinical trials. Nat. Neurosci.1, 537 (1998). ArticleCAS Google Scholar
Ye, W. et al. FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell93, 755–766 (1998). ArticleCAS Google Scholar
Branton, R.L., Love, R.M. & Clarke, D.J. cAMP included during cell suspension preparation improves survival of dopaminergic neurons in vitro. Neuroreport9, 3223–3227 (1998). ArticleCAS Google Scholar
Kalir, H.H. & Mytilineou, C. Ascorbic acid in mesencephalic cultures: effects on dopaminergic neuron development. J. Neurochem.57, 458–464 (1991). ArticleCAS Google Scholar
Brustle, O. et al. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA94, 14809–14814 (1997). ArticleCAS Google Scholar
Spenger, C. et al. Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Exp. Brain Res.112, 47–57 (1996). ArticleCAS Google Scholar
Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol.17, 653–659 (1999). ArticleCAS Google Scholar
Joyner, A.L. Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet.12, 15–20 (1996). ArticleCAS Google Scholar
Studer, L. et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res. Bull.41, 143–150 (1996). ArticleCAS Google Scholar
Auerbach, J.M., Eiden, M.V. & McKay, R.D.G. Tranplanted CNS stem cells form functional synapses in vivo. Eur. J. Neurosci.12, 1696–1704 (2000). ArticleCAS Google Scholar